По оценкам американской разведки, сегодня во всем мире имеется около 100 потенциальных стратегических целей для создаваемых по программе RNEP ядерных боезарядов. При этом подавляющее большинство из них находятся на глубинах не более 250 метров от земной поверхности. Но ряд объектов расположен на глубине 500–700 метров. Хотя, по расчетам, ядерные “пенетраторы” будут способны пробить до 100 метров глинистого грунта и до 12 метров скального грунта средней прочности, они в любом случае уничтожат подземные цели за счет своей несравнимой с обычными фугасными боеприпасами мощности. Для того, чтобы максимально исключить радиоактивное заражение поверхности земли и воздействие радиации на местное население, ядерный боеприпас мощностью 300 кт должен быть подорван на глубине не менее 800 метров.
Из всего вышесказанного следует многозначительный вывод — тектоническое оружие — это оружие единственного и «последнего» удара. И человек вряд ли решится на его полноценное применение. Хотя испытание его на каких-нибудь очередных «странах-изгоях» (особенно — богатых углеводородами!) можно будет ожидать в ближайшем будущем.
• АСТРОНОМИЯ, АСТРОФИЗИКА И КОСМОНАВТИКА
Загадка космических струн
Теоретическая физика предлагает нам в очередной раз круто изменить представления о мире. Элементарные частицы оказались колебаниями неких микроскопических суперструн, вибрирующих в шестимерном пространстве. А в нашей Вселенной кроме звезд, планет, пылевых и газовых туманностей обнаружились другие, тоже совершенно невероятные объекты — космические струны. Они тянутся через всю Вселенную от одного ее горизонта до другого, скручиваются, рвутся и сворачиваются в кольца, выделяя громадное количество энергии.
Со времен Альберта Эйнштейна одной из основных задач физики стало объединение всех физических взаимодействий, поиск единой теории поля. Существуют четыре основных взаимодействия: электромагнитное, слабое, сильное или ядерное, и самое универсальное — гравитационное. У каждого взаимодействия есть свои переносчики — заряды и частицы. У электромагнитных сил — это положительные и отрицательные электрические заряды (протон и электрон) и частицы, переносящие электромагнитные взаимодействия, — фотоны. Слабое взаимодействие переносят так называемые бозоны, открытые только десять лет назад. Переносчики сильного взаимодействия — кварки и глюоны. Гравитационное взаимодействие стоит особняком — это проявление кривизны пространства-времени.
Эйнштейн работал над объединением всех физических взаимодействий более тридцати лет, но положительного результата так и не достиг. Только в 70-е годы нашего столетия после накопления большого количества экспериментальных данных, после осознания роли идей симметрии в современной физике С. Вайнберг и А. Салам сумели объединить электромагнитные и слабые взаимодействия, создав теорию электрослабых взаимодействий. За эту работу исследователи совместно с Ш. Глэшоу (который теорию расширил) были удостоены Нобелевской премии по физике 1979 года.
Многое в теории электрослабых взаимодействий было странным. Уравнения поля имели непривычный вид, а массы некоторых элементарных частиц оказались непостоянными величинами. Они появлялись в результате действия так называемого динамического механизма возникновения масс при фазовом переходе между различными состояниями физического вакуума. Физический вакуум — не просто “пустое место”, где отсутствуют частицы, атомы или молекулы. Структура вакуума пока неизвестна, ясно только, что он представляет собой наинизшее энергетическое состояние материальных полей с чрезвычайно важными свойствами, которые проявляются в реальных физических процессах. Если, например, этим полям сообщить очень большую энергию, произойдет фазовый переход материи из ненаблюдаемого, “вакуумного” состояния в реальное. Как бы “из ничего” появятся частицы, имеющие массу. На гипотезах о возможных переходах между различными состояниями вакуума и понятиях симметрии основана идея единой теории поля.
Проверить эту теорию в лаборатории удастся, когда энергия ускорителей достигнет 1016 ГэВ на одну частицу. Произойдет это не скоро: сегодня она пока не превышает 104 ГэВ, и строительство даже таких “маломощных” ускорителей — мероприятие чрезвычайно дорогостоящее даже для всего мирового научного сообщества. Однако энергии порядка 1016 ГэВ и даже гораздо выше были в ранней Вселенной, которую физики часто называют “ускорителем бедного человека”: изучение физических взаимодействий в ней позволяет проникнуть в недоступные нам области энергий.