Читаем «Наука и Техника» [журнал для перспективной молодежи], 2007 № 09 (16) полностью

В окончательной форме GALCIT 5 представлял собой твердую черную массу, при обычных температурах напоминающую застывший гудрон. Такое топливо имело ряд преимуществ перед пороховыми смесями: оно не растрескивалось при хранении, и надежно прилипало к корпусу двигателя.

В дальнейших разработках асфальт заменялся полисульфидным полимером или полиуретаном. При использовании перхлората аммония в качестве окислителя можно было получить цельный импульс более 250, а, добавив в смесь металлический порошок, довести импульс до 280.

Немаловажно и то, что изготовленный по такой технологии двигатель был абсолютно безопасен, не требовал дальнейшего технического обслуживания и мог храниться много лет, готовый к немедленному запуску. Преимущества огромные! Ведь большинство жидкостных баллистических ракет Р-7, Р-12, Atlas и Titan-I, стояли на своем дежурстве в незаправленном состоянии.

Сообщения об успехах американцев привели к появлению двух постановлений Совета Министров СССР, первое — № 1032-492 от 5 сентября 1958 года касалось создания ракетного комплекса Д-6, для вооружения подводных лодок. Разработка ракеты поручалась ОКБ-1 Королева.

Во втором постановлении, от 21 юля 1959 года № 839–379, формулировались требования к твердотопливным баллистическим ракетам класса “земля-земля”. Предусматривалось разработать три ракеты с дальностью 30, 2500 и 10000 км.

Поиском рецепта твердого топлива занялись практически все ведущие химические организации: Ленинградский Государственный институт прикладной химии (ГИПХ), Пермский НИИ-130 (НИИ полимерных материалов), НИИ-125 и Алтайский НИИ химической технологии (АНИИ XT). Поиски проходили в рамках программы “Нейлон”. Программа имела два направления: “Нейлон-Б” и “Нейлон-С”. Первое направление — традиционное, на базе баллиститного пороха. Второе — исследовательское, имело целью получение смесевого топлива, на базе перхлората аммония, фурфурольно-ацетоновой смолы, тиокола марки “Т” и нитрогуанидина, с удельным импульсом не менее 235 кг» сек/кг.

Ракета РТ-2 на параде в Москве (вверху), установщик ракеты РТ-2 (внизу)

Пока в СССР собирались с силами, по ту сторону океана твердотопливное направление развивалось семимильными шагами.

Разработка Minuteman была закончена и началось производство небольшой серии ракет для проведения летных испытаний.

Двигатель первой ступени работал на более совершенном топливе, состоящем из полибутадиеновой акриловой кислоты, перхлората аммония, алюминиевого порошка и эпоксидной смолы. Металлический корпус двигателя изготавливался из шести свариваемых цилиндрических секций (толщина стенок 3,7 мм) и двух днищ. Верхнее днище приваривалось к цилиндрической части корпуса, а нижнее — привинчивалось на многозаходной резьбе, после заливки топлива.

На внутреннюю поверхность нижнего днища наносилось теплозащитное покрытие, состоящее из слоя асбеста и слоя армированной стекловолокном фенольной смолы. Такое же покрытие наносилось на небольшие выхлопные трубы, соединяющие камеру сгорания с четырьмя соплами. Затем в эти трубы устанавливались графитовые вставки толщиной 25 мм.

Перед заливкой топлива в корпус помещался алюминиевый стержень с сечением в форме шестиконечной звезды, который служил для образования внутренней полости в топливном заряде. Топливо затвердевало в течение двух суток, затем следовал 48-часовой период постепенного охлаждения заряда до комнатной температуры.

Фирма Тиокол, главный разработчик двигателей, утверждала, что топливо в корпусе двигателя не изменит своих характеристик в течение, как минимум, пяти лет.

В конце техпроцесса изготовления из РДТТ вынимался алюминиевый стержень, и двигатель отправляли на гигантскую ренгеновскую установку, для поиска трещин и пустот. После проверки, с торца топливного заряда срезался излишек топлива и к корпусу привинчивалось нижнее днище.

Вторая ступень отличалась тем, что нижнее днище корпуса крепилось болтами, а корпус РДТТ третьей ступени изготавливался из стекловолокна, пропитанного эпоксидной смолой, методом намотки на гипсовую оправку.

Каждая ступень имела четыре отклоняющихся сопла. Два сопла отклонялись дифференциально вверх и вниз для управления ракетой по тангажу, и два — отклонялись в одном направлении для управления по курсу и в разных направлениях для управления по крену.

Ступени соединялись болтами, через переходники в виде усеченных конусов.

Инерциальная система наведения ракеты обеспечивала точность с вероятной круговой ошибкой попадания в цель менее 1600 м.

15 сентября 1959 года на базе ВВС Эдвардс состоялось первое испытание ракеты Minuteman, с целью определения оптимальной формы и размера пусковой шахты. Топлива в двигателе первой ступени было всего на несколько секунд горения, что обеспечивало ее подъем только на несколько десятков метров над землей. Для того, что бы ракета не упала обратно в шахту после прекращения работы двигателя, ее поддерживали несколько нейлоновых тросов. Всего провели 18 подобных “пусков”.

Перейти на страницу:

Похожие книги