Читаем "Наука логики" Гегеля в доступном изложении полностью

§ 102. Числа создаются посредством действия нумерации. К одной единице добавляется ещё одна единица и в итоге получается число "два". К двойке добавляется ещё одна единица и получается число "три". В дальнейшем к полученному числу всякий раз добавляют ещё одну единицу и в результате получают следующее число. Но действие нумерации не следует смешивать с действием сложения. При нумерации только производят числа, а при сложении работают с уже готовыми числами.

Число содержит в себе свою численность, как некоторое количество единиц, и, вместе с тем, выступает как их единство, как некоторый квант. Определяемое числом некоторое количество единиц обособляет их от остального множества. Данное количество единиц становится численностью числа. Так, например, во время каких-либо коллективных мероприятий группа людей может шутливо заметить, что их "сосчитали". Казалось бы – всего-то дел, что кого-то сосчитали, но уже самим этим действием "сосчитанных" людей как бы обособили от остальной массы (множества) и выделили в отдельную группу. При этом сосчитанная группа людей несёт на себе два определения: а) она есть данная группа (квант) и б) она имеет в себе определённую численность.

Например: число 5, число 7, число 10. Каждое из этих чисел представляет собой некую единую в себе целокупность единиц. Но количество единиц (численность) у каждого числа своё: у первого – 5 единиц, у второго – 7 единиц, у третьего – 10 единиц. Представим себе такой ряд простых чисел, начинающийся с единицы и уходящий в множество:

1, 2, 3, .., 9, .., 27, .., 63, .., 81, .., 100, 1 тыс., .., 1 млн., .., 1 млрд., .., множество.

С левого края этого ряда мы имеем единицу, с правого края – множество. Число всегда занимает среднее положение между ними. С левой стороны от числа находится то количество единиц, которое оно объединяет и обособляет от множества. С правой стороны находится то множество, из которого число было взято и которому оно, тем не менее, принадлежит. Если мы возьмём число 9, то занимаемое им с левой стороны ряда девятое место говорит о количестве единиц, которое оно объединяет в себе. Если, наоборот, мы пойдём вправо от числа 9, то будем углубляться в то множество, которому оно принадлежит, как квант. Например, число 63 будет представлять собой то определяемое им множество, в котором число 9, взятое как квант, будет числиться (содержаться) 7 раз.


§ 102а. Понятие числа, таким образом, включает в себя три момента: а) численность содержащихся в нём единиц; б) их простое единство, как исключающее из себя все другие единицы, квант; и в) тождество себя как численности с самим собой как квантом. Из этих моментов понятия числа вытекает смысл всех математических действий:

сложения (вычитания),

умножения (деления),

возведения в степень (извлечение корня).

а) Как некоторые множества единиц, числа не равны между собой. Поэтому они подлежат сравнению друг с другом, которое производится посредством действий сложения и вычитания.

Если в одну группу выделено 5 человек, а в другую 10, то всего будет 15; при вычитании же этих чисел мы получим разницу в 5 человек. Перемножать эти числа или возводить их в степень нельзя, поскольку они "сосчитаны", т.е. обособлены от остального множества. Если 5 умножить на 10, то мы получим число 50. Но откуда оно могло взяться, если у нас "сосчитано" всего 15 человек (5 + 10), которых тем самым мы обособили от остального множества и сравниваем их между собой.

б) Поскольку числа, как кванты, не несут в себе никакой качественной специфики, постольку все они качественно однородны. "Мы с тобой одной крови!" - говорили герои Киплинга. То же самое могли бы сказать о себе и все числа, поскольку они не имеют в себе никаких качественных различий и отличаются друг от друга только своей численностью. Поэтому все числа принадлежат одному множеству, из которого они ранее были взяты. В этом множестве каждое число становится одним из сомножителей, а действия сложения и вычитания уступают место действиям умножения и деления. Причём одно и то же число может выступать здесь и как единство (квант), и как численность. Например: 7 х 9 = 63. По поводу этого действия мы можем сказать, что в полученном результате (63) число (квант) 7 содержится (числится) 9 раз. А можем сказать и наоборот, что число (квант) 9 содержится (числится) 7 раз.

Итак, за счёт действия нумерации мы обособляем некоторое количество единиц от множества и определяем их единство числом. Посредством действий сложения и вычитания мы сравниваем определяемые числом количества друг с другом. При умножении и делении мы возвращаем числа множеству, из которого они были ранее взяты.

Перейти на страницу:

Похожие книги

Агнец Божий
Агнец Божий

Личность Иисуса Христа на протяжении многих веков привлекала к себе внимание не только обычных людей, к ней обращались писатели, художники, поэты, философы, историки едва ли не всех стран и народов. Поэтому вполне понятно, что и литовский религиозный философ Антанас Мацейна (1908-1987) не мог обойти вниманием Того, Который, по словам самого философа, стоял в центре всей его жизни.Предлагаемая книга Мацейны «Агнец Божий» (1966) посвящена христологии Восточной Церкви. И как представляется, уже само это обращение католического философа именно к христологии Восточной Церкви, должно вызвать интерес у пытливого читателя.«Агнец Божий» – третья книга теологической трилогии А. Мацейны. Впервые она была опубликована в 1966 году в Америке (Putnam). Первая книга трилогии – «Гимн солнца» (1954) посвящена жизни св. Франциска, вторая – «Великая Помощница» (1958) – жизни Богородицы – Пречистой Деве Марии.

Антанас Мацейна

Философия / Образование и наука
Критика политической философии: Избранные эссе
Критика политической философии: Избранные эссе

В книге собраны статьи по актуальным вопросам политической теории, которые находятся в центре дискуссий отечественных и зарубежных философов и обществоведов. Автор книги предпринимает попытку переосмысления таких категорий политической философии, как гражданское общество, цивилизация, политическое насилие, революция, национализм. В историко-философских статьях сборника исследуются генезис и пути развития основных идейных течений современности, прежде всего – либерализма. Особое место занимает цикл эссе, посвященных теоретическим проблемам морали и моральному измерению политической жизни.Книга имеет полемический характер и предназначена всем, кто стремится понять политику как нечто более возвышенное и трагическое, чем пиар, политтехнологии и, по выражению Гарольда Лассвелла, определение того, «кто получит что, когда и как».

Борис Гурьевич Капустин

Политика / Философия / Образование и наука
Осмысление моды. Обзор ключевых теорий
Осмысление моды. Обзор ключевых теорий

Задача по осмыслению моды как социального, культурного, экономического или политического феномена лежит в междисциплинарном поле. Для ее решения исследователям приходится использовать самый широкий методологический арсенал и обращаться к разным областям гуманитарного знания. Сборник «Осмысление моды. Обзор ключевых теорий» состоит из статей, в которых под углом зрения этой новой дисциплины анализируются классические работы К. Маркса и З. Фрейда, постмодернистские теории Ж. Бодрийяра, Ж. Дерриды и Ж. Делеза, акторно-сетевая теория Б. Латура и теория политического тела в текстах М. Фуко и Д. Батлер. Каждая из глав, расположенных в хронологическом порядке по году рождения мыслителя, посвящена одной из этих концепций: читатель найдет в них краткое изложение ключевых идей героя, анализ их потенциала и методологических ограничений, а также разбор конкретных кейсов, иллюстрирующих продуктивность того или иного подхода для изучения моды. Среди авторов сборника – Питер Макнил, Эфрат Цеелон, Джоан Энтуисл, Франческа Граната и другие влиятельные исследователи моды.

Коллектив авторов

Философия / Учебная и научная литература / Образование и наука