Другой пример. Проектируя сооружение объекта, определяют его сметную стоимость. Эта стоимость распределяется по всему циклу работ: а) стоимость проектных работ, б) стоимость возведения фундаментов, в) возведения вертикальных конструкций, г) сооружения крыши, д) отделочных работ, и т.д. Последовательность этих работ представляет собой порядок поэтапного
нарастания экстенсивной величины стоимости строительства. Но будет ли этот порядок приведён в действие, и если да, то насколько он будет осуществлён, зависит от реального финансирования хода строительства, т.е., от порядка интенсивного нарастания величины стоимости строительства объекта.Следовательно, порядок содержит в себе количественное соотношение определений величины.
Количественные отношения
§ 105
. Порядок устанавливает пропорциональные отношения между экстенсивным и интенсивным определением величины. При прямо пропорциональном
отношении изменение одной стороны приводит к аналогичному изменению другой стороны. Если увеличивается первое определение, тогда увеличивается и второе, если первое уменьшается, тогда уменьшается и второе. Когда одно определение увеличивается в два раза, тогда и другое также увеличивается в два раза: 9 : 7, 18 : 14. И, наоборот, когда одно уменьшается в три раза, тогда и другое уменьшается в такое же количество раз: 15 : 9, 5 : 3. Другой пример. Если возникает необходимость повысить абсолютную величину сбора зерновых, то для этого можно в той или иной пропорции использовать обе её составляющие: а) повышать урожайность культуры на единицу посевов, и б) увеличивать сами посевные площади. Если, наоборот, требуется сократить величину сбора зерновых, то для этого также можно в прямой пропорции: а) использовать менее продуктивные сорта культуры, и б) сокращать посевные площади. Если мы вернёмся к примеру со строительством объекта, то найдём, что сокращение величины финансирования вдвое ведёт к пропорциональному сокращению объема реально выполненных работ.
§ 105а
. При обратно пропорциональном отношении сама величина остаётся неизменной, но изменяется пропорция между её сторонами. Если первое определение увеличивается, то второе уменьшается, и наоборот. Например, постоянство числа 36 обеспечивается следующими соотношениями сторон: 6 х 6; 3 х 12; 2 х 18; 1 х 36. Здесь стороны изменяются в обратной пропорции, но сама величина остаётся постоянной.Другой пример. Для удержания стабильной величины сбора зерновых в условиях постоянного роста урожайности культур идут по пути сокращения объёма посевных площадей в необходимой для того пропорции. И, наоборот, при снижении урожайности культур пропорционально увеличивают объёмы посевных площадей.
Третий пример. Когда возрастает стоимость материалов и услуг, а сумма денег, отпущенная на строительство объекта, остаётся прежней, тогда идут по пути сокращения затрат и использования более дешёвых материалов. Хотели строить из красного кирпича, но цены выросли, и хорошо, что денег хватило хотя бы на белый, более дешёвый кирпич. В итоге величина сметной стоимости строительства объекта осталась без изменений, хотя в самой смете пришлось выискивать пути для сокращения объёмов затрат пропорционально удорожанию их стоимости. Хорошим примером обратно пропорциональных отношений служит также изменение котировок валют.
Единство прямо пропорционального
отношения и обратно пропорционального отношения даёт нам степенное отношение определений величины.
§ 106
. Степенное отношение соответствует ступени для-себя-бытия качества. При сложении и при умножении мы имеем дело с различными величинами. Так, например, число 9 выражает то количество, которое находится между числами 8 и 10. Сравнивая их между собой, мы найдём, что 9 больше 8, но меньше 10. Переход к числу 8 даёт уменьшение, а переход к числу 10, наоборот, даёт увеличение. При умножении число 9 выступает как один из сомножителей, где другим сомножителем выступает любое другое число. В обоих действиях, и при сложении, и при умножении, участвует несколько различных чисел (величин), и результатом этих действий становится их общая сумма или произведение.При возведении в степень мы имеем дело уже только с одним числом при полном тождестве его сторон: его численности
и его единства (кванта). Так, например, если мы будем возводить в степень число 9, то для этого мы умножим это число само на себя 9 х 9 (квант помножим на его численность) и получим число 81. Если произведём обратное действие, т.е., если извлечём корень квадратный из 81, то получим 9 раз по 9. Если после этого извлечём корень квадратный из 9, то получим 3 раза по 3. И т.д. в обе стороны.