Математическое бесконечное
интересно, с одной стороны, произведенным им расширением математики и теми великими результатами, которые были достигнуты благодаря введению его в последнюю, но, с другой стороны, оно достойно внимания вследствие того, что этой науке еще не удалось оправдать посредством понятия (понятие мы здесь берем в собственном его смысле) его применение. Предложенные оправдания основаны, в конечном счете, на правильности результатов, получающихся при помощи этого определения, правильности, доказанной из других оснований, но не на ясности предмета и операции, посредством которой получаются эти результаты, и даже больше того: приводимые оправдания содержат признание того, что сама эта операция неправильна.Это уже само по себе есть нечто неудовлетворительное; такой образ действия ненаучен. Но он влечет за собою еще и ту невыгоду, что математика, не зная природы этого своего орудия вследствие того, что не справилась с его метафизикой и критикой, не могла также определить объем его применения и обеспечить себя от злоупотребления им.
В философском же отношении математическое бесконечное важно потому, что на самом деле в его основании лежит понятие истинного бесконечного, и оно стоит куда выше, чем обычно так называемое метафизическое бесконечное
, исходя из которого против него выдвигаются возражения. От этих возражений наука математика часто умеет спасаться лишь тем, что она отвергает компетенцию метафизики, утверждая, что ей нет дела до этой науки, что ей нечего заботиться о понятиях последней, если только она действует последовательно на своей собственной почве. Она-де должна рассматривать не то, что истинно в себе, а то, что истинно в ее области.При всех своих возражениях против математического бесконечного метафизика не может отрицать или опровергнуть блестящих результатов, которые дало его применение, а математика не умеет выяснить метафизику своего собственного понятия и поэтому не в состоянии также и дать вывод тех приемов, которые делает необходимым применение бесконечного.
Если бы над математикой тяготело единственно только затруднение, причиняемое понятием
вообще, то она могла бы без околичностей оставить его в стороне, поскольку именно понятие есть нечто большее, чем только указание существенных определенностей, т. е. рассудочных определений какой-нибудь вещи, а в недостаточной отчетливости этих определенностей математику никак нельзя упрекнуть; она могла бы оставить в стороне это затруднение, ибо она не есть такого рода наука, которая должна иметь дело с понятиями своих предметов и порождать свое содержание посредством развития понятия, хотя бы только путем (рассудочных) рассуждений. Но при методе применения ею своего бесконечного она встречает главное противоречие в самом том своеобразном методе, на котором она вообще основана как наука. Ибо исчисление бесконечного дозволяет и требует таких приемов, которые она должна отвергать при действиях над конечными величинами, и вместе с тем она обращается со своими бесконечными величинами, как с конечными определенными количествами и хочет применять к первым те же самые приемы, которые имеют место при действиях над последними. Основной чертой развития этой науки является то, что она применяла к трансцендентным определениям и действиям над ними форму обычного исчисления.