Мы, напротив, уже сказали выше, что определение математического бесконечного, и притом так, как его употребляют в высшем анализе, соответствует понятию истинного бесконечного; теперь мы предпримем сопоставление этих двух определений в более развернутом виде. Что касается, прежде всего, истинно бесконечного определенного количества, то оно определилось как в самом себе
бесконечное; оно таково, поскольку, как мы выяснили, и конечное определенное количество или определенное количество вообще, и его потустороннее или дурное бесконечное одинаково сняты. Снятое определенное количество возвратилось тем самым к простоте и к соотношению с собою самим, но не только так, как экстенсивное определенное количество, когда оно перешло в интенсивное определенное количество, имеющее свою определенность в некотором внешнем многообразии лишь в себе, причем оно, однако, по предположению безразлично к этому многообразию и отлично от него. Бесконечное определенное количество содержит, напротив, во-первых, внешность и, во-вторых, ее отрицание в нем самом. Таким образом, оно уже больше не есть некоторое конечное определенное количество, не есть некоторая определенность величины, имеющая наличное бытие как определенное количество, а оно просто и поэтому имеет бытие лишь как момент; оно есть определенность величины в качественной форме; его бесконечность состоит в том, что оно дано как некоторая качественная определенность. Таким образом, оно как момент находится в существенном единстве со своим другим, имеет бытие лишь как определенное этим своим другим, т. е. оно обладает значением лишь в связи с неким, находящимся к нему в отношении. Вне этого отношения оно нуль, между тем как раз определенное количество как таковое, согласно предположению, безразлично к отношению и тем не менее является в нем некоторым непосредственным покоящимся определением. В отношении оно, как представляющее собою лишь момент, не есть некое стоящее особняком (für sich) безразличное; в бесконечности как для-себя-бытии оно, будучи вместе с тем некоторой количественной определенностью, имеет бытие лишь как некоторое «для одного».Понятие бесконечного, как оно изложено здесь абстрактно, окажется лежащим в основании математического бесконечного, и оно само сделается яснее, когда мы рассмотрим различные ступени выражения определенного количества как момента отношения
, начиная с низшей ступени, на которой оно еще есть вместе с тем определенное количество как таковое, и кончая высшей, где оно получает значение и выражение бесконечной величины в собственном смысле.Итак, возьмем сначала определенное количество в том отношении
, в котором оно есть дробное число. Такая дробь, например 2/7, не есть такое определенное количество, как 1, 2, 3 и т. д.; она есть, правда, обыкновенное конечное число, однако не непосредственное, подобно целым числам, а как дробь, определенное посредственно двумя другими числами, которые суть в отношении друг друга численность и единица, причем и единица также есть некоторая численность. Но взятые абстрагированно от этого их ближайшего определения в отношении друг друга и рассматриваемые лишь со стороны того, что в том качественном соотношении, в котором они здесь находятся, происходит с ними, как с определенными количествами, 2 и 7 помимо этого соотношения суть безразличные определенные количества; но так как они здесь выступают как моменты друг друга и, стало быть, некоторого третьего (того определенного количества, которое называется показателем), то они имеют значение не как 2 и 7, а лишь со стороны их определенности в отношении друг друга. Вместо них можно поэтому поставить также 4 и 14 или 6 и 21 и т. д. до бесконечности. Тем самым они, следовательно, начинают получать качественный характер. Если бы они имели значение просто как определенные количества, то пришлось бы признать, что 2 и 7 суть одно – лишь 2, а другое – лишь 7; 4, 14, 6, 21 и т. д. суть безоговорочно нечто другое, чем эти числа, и, поскольку они суть лишь непосредственные определенные количества, они не могут быть подставлены одни вместо других. Но поскольку 2 и 7 имеют значение не со стороны той определенности, что они суть такие определенные количества, постольку их безразличная граница снята; они, стало быть, с этой стороны заключают в себе момент бесконечности, ибо они не только как раз уже больше не суть то, что они суть, а еще, кроме того, сохраняется их количественная определенность, но как в себе сущая качественная определенность, а именно согласно тому, что они значат в отношении. Вместо них может быть поставлено бесконечное множество других чисел, так что величина дроби не изменяется вследствие той определенности, которую имеет отношение.