Читаем Наука о боли полностью

Запись электрических потенциалов с рецепторов и одиночных нервных волокон позволяет регистрировать еще одно хорошо известное физиологам явление — адаптацию рецепторов . Установлено, что разряд электрических импульсов, возникающий в нервном волокне при раздражении рецепторов, постепенно затухает. Число одиночных сигналов уменьшается, наступает период адаптации. Существуют быстро и медленно адаптирующиеся рецепторы. Наиболее медленно адаптируются холодовые рецепторы. Они способны давать разряды в течение нескольких минут. Медленно адаптируются рецепторы растяжения во внутренних органах.

Игго, изучая адаптацию рецепторов волосяных луковиц кошки, кролика и обезьяны, сделал вывод, что медленно адаптирующиеся рецепторы относятся к двум типам (I и II), различающимся характером электрического ответа и, по-видимому, некоторыми особенностями строения.

Химические и электрические изменения в нерве, возникающие при прохождении импульса, доказывают, что нерв нельзя рассматривать как пассивный проводник, нечто вроде проволоки или кабеля, по которому распространяется «жизненная сила». Нервные волокна, как показали опыты на животных, активно участвуют в распространении импульсов.

Английский физиолог Гассер сравнивает электрические явления в нервах с тиканьем часов. И то и другое является лишь внешним выражением каких-то внутренних механизмов. В основе электрических явлений лежат сложнейшие химические реакции, совершающиеся в клетках и волокнах. По мере прохождения импульса вдоль нервного волокна в нем последовательно возникают электрические и химические изменения. При помощи тонких и чувствительных методов установлено, что при возбуждении в нерве значительно усиливается обмен веществ. Потребление кислорода возрастает на 20—30%, увеличивается выделение углекислоты и аммиака и даже повышается температура, хотя и очень незначительно.

* * *

И наконец, несколько заключительных слов. Современная наука вооружила физиологию и медицину столь тонкими методами исследования животного организма, что подчас они кажутся фантастическими. Применение их для изучения функций центральной и периферической нервной системы, состава крови, состояния сердца, сосудов, легких, желудочно-кишечного тракта стало возможным благодаря блестящим достижениям техники, электроники, кибернетики, бионики. По типу и характеру электрической активности мы судим о состоянии и деятельности головного мозга, сердечно-сосудистой системы, мышц, нервов. Зонд, введенный через вены руки в полости сердца, радиопилюли, «странствующие» по желудку и кишечнику и подающие сигналы о протекающих в них процессах, диагностические машины, искусственные органы, методы реанимации и многое другое — все это пришло в клинику из физиологических лабораторий, это результаты самоотверженного труда целого ряда поколений экспериментаторов, широкого использования смежных наук.

Но подчас это обилие знаний приводит к односторонним и упрощенным выводам. Читатель может сделать вывод, что резкое учащение импульсов, поступающих в центральную нервную систему, и является причиной возникновения болевого ощущения. Чем больше сигналов, тем сильнее, казалось бы, боль. На самом деле это совсем не так! Возбуждение рецепторов и нервных проводников — только первый, начальный этап боли. Частота электрических разрядов в рецепторе, нервном стволе, нейроне — своеобразный код передачи информации. Но комплексное интегративное чувство боли, формирующееся в центральных нервных структурах, гораздо сложнее и не сводится к элементарному «декодированию» поступающих электрических импульсов.

Из года в год, от одной конференции к другой исследователи начинают переосмысливать электрофизиологические явления в происхождении болевого синдрома. Вряд ли «различные электрофизиологические феномены являются непосредственной причиной возникновения чувства боли. «Нам кажется, что в этом смысле особенно мала роль параметра частоты импульсации»,— говорит советский ученый П. К. Анохин в предисловии к сборнику «Нервные механизмы боли и зуда», изданному в 1962 г. Эти мысли прозвучали и на Парижском симпозиуме по боли 1967 г.

Нельзя не признать, что, изучая периферические механизмы болевого ощущения, физиологи и врачи далеки от понимания его сущности. Поэтому не будем торопиться и попытаемся найти решение в следующих главах.

Глава 3. Центральные механизмы чувства боли



Спинной мозг

«Когда вы наступаете на гвоздь,— говорит Г. Уолтер в своей книге «Живой мозг»,— вы сначала подпрыгиваете и лишь затем ощущаете боль. Сигналы успевают проделать свой путь по рефлекторной дуге туда и обратно за время меньшее, чем требуется чувству боли для достижения мозга».

Перейти на страницу:

Похожие книги

Тайны мозга вашего ребенка. Как, о чем и почему думают дети и подростки от 0 до 18
Тайны мозга вашего ребенка. Как, о чем и почему думают дети и подростки от 0 до 18

В своей новой книге авторы бестселлера «Тайны нашего мозга», известные ученые-нейробиологи, рассказывают, как работает и развивается мозг ребенка. Книга освещает удивительные и интереснейшие факты о функционировании загадочного «природного компьютера» в период от внутриутробного развития до совершеннолетия. Бы узнаете, как можно повлиять на мозг ребенка еще до рождения, что важнее для развития интеллекта – генетика или воспитание, почему темперамент не передается по наследству, почему дети так любят сладкое и не любят овощи, почему лучше учить иностранные языки в раннем возрасте, с чем на самом деле связаны проблемы поведения подростков, почему даже очень умные дети иногда плохо учатся, а также многое другое, что поможет вам лучше узнать и понять своего ребенка.

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина / Детская психология / Образование и наука