В конце девятнадцатого века Дэвид Гилберт был один из двух величайших математиков мира и был одним из величайших энтузиастов нового подхода к бесконечности, в котором, вопреки тому, что мы вам сейчас сказали, бесконечность рассматривается как предмет, а не процесс. Новый подход был детищем Георга Кантора, немецкого математика, чьи работы привели его на территорию чреватыми логическими ловушками. На протяжении века целая область оставалась запутанной. В конце концов он решил разобраться раз и навсегда решив сперва построить фундамент. Он был не единственным, кто делал это, но был одним из самых радикальных. Ему удалось разобраться в области, которая привела его к таким отрезкам времени, но только за счёт возникновения проблем в другом месте.
Многие математики ненавидели идеи кантора, но Гилберту они нравились, и он активно их защищал. «Никто», — заявлял он — «не сможет изгнать вас их рая, который создал Кантор». Это конечно же было настолько парадоксально как и сам рай. Гилберт объяснял некоторые их парадоксальных свойств бесконечности в терминах вымышленного отеля, теперь известного как отель Гилберта.
В отеле Гилберта находится бесконечное число номеров. Все они пронумерованы: 1,2,3,4 и так до бесконечности. Это пример фактической бесконечности — каждый номер существует сейчас и номер под номером энный газилион и один ещё не построен. И вот когда один воскресным утром вы туда приезжаете, то выясняется что все номера заняты.
В отеле с фиксированным количеством номеров, даже если их миллиард миллиардов и еще одна, это будет проблемой. Никакое количество толкущихся вокруг людей не может создать дополнительную комнату (для упрощения задачи условимся, что нормы безопасности и здравоохранения не позволяют подселить в номер второго человека).
Однако, в отеле Гилберта всегда есть комната для еще одного постояльца. Не под номером «бесконечность»,конечно, такой комнаты просто нет. Под номером «один».
А что же делать невезучему из первого номера? Он переезжает в комнату номер «2». Постоялец второй комнаты переезжает в третью, и так далее. Постоялец миллиард- миллиардной комнаты переезжает в комнату «миллиард-миллиардная и один», а хозяин миллиард-миллиардной и один — в миллиард-миллиардную и два. Постоялец комнаты под номером «N» просто переходит в комнату «N+1», и это работает для любого числа N.
В отеле с конечным числом комнат такая штука не прокатит. В нем нет комнаты под номером «миллиард-миллиардная и два», в которую мог бы переселиться постоялец из миллиард-миллиардной и один. В отеле Гилберта комнат бесконечное множество, поэтому каждый может переместиться в соседний номер. Как только это действие совершено, отель снова заполнен доверху.
Но это ещё не всё. В понедельник в совершенно полный отель Гилберта приезжает группа туристов. И нет проблем: управляющий переселяет всех на пятьдесят номеров вперёд. — номер 1 в 51, номер 2 — в 52, и так далее, в результате чего номера с 1-50 остаются свободными для всех туристов.
Во во вторник прибывает бесконечно большая группа туристов, содержащая бесконечное число людей, услужливо пронумерованных A1, A2, A3… Уверены, что на них не хватит номеров? Однако они есть. Уже поселенные гости переселяются в номера с чётными: гость из первого номера переезжает во второй, гость из второго номера переезжает в четвёртый, гость из третьего переезжает в шестой. и так далее. Затем, когда освободятся нечётные номера их занимают новоприбывшие гости: A1 отправляется в 1 номер, A2 отправляется в 3 номер, A3 отправляется в 5 номер. Ничего сложного.
К среде управляющий уже рвёт на себе волосы, потому что бесконечные группы туристов всё появляются и появляются. Группы именуются буквами A, B, C.. из бесконечно долго алфавита, а люди в них — A1, A2, A3…, B1, B2, B3… C1, C2, C3…
.. и так далее. Но у управляющего появляется блестящая идея. На бесконечно большой парковке около бесконечно большого отеля он распределяет всех новых гостей в виде бесконечно большого квадрата: Al A2 A3 A4 A5…
Б1_Б2_Б3_Б4_Б5…
В1_В2_В3_В4_В5…
Г1_Г2_Г3_Г4_Г5…
E1_E2_E3_E4_E5…
Затем он выстроил их в одну бесконечно длинную прямую, в порядке А1-А2 Б1- А3 Б2 В1 — А4 Б3 В2 Г1 — А5 Б4 В3 Г2 Е1…
Чтобы понять смысл, посмотрите на диагонали, идущие из правого верхнего угла в левый нижний. Мы использовали дефисы, чтобы их разделить. Большинство людей предпочтет снова переселить уже живущих постояльцев в четные номера и заполнить нечетные новоприбывшими. Это сработает, однако есть и более элегантный метод, и управляющий, будучи математиком, немедленно его находит. Он загружает всех обратно в бесконечный автобус фирмы, распределяя места в порядке их следования в линии. Это оставляет только одну проблему, которая уже была решена ранее[62]
.