Звучит, может быть, не слишком впечатляюще, но на деле из этого следует, что пространство может быть изогнутым само по себе, а не под действием
По словам биографа Гаусса, Сарториуса фон Вальтерсхаузена, великий математик имел привычку объяснять свою мысль, прибегая к образу муравья, ползущего по некой поверхности. По мнению такого муравья, кроме неё ничего не существует. Тем не менее, блуждая по поверхности с рулеткой (хорошо-хорошо, Гаусс не упоминал ни о каких рулетках, но не будем пуристами), муравей может сделать
Все мы когда-то учили в школе, что, согласно евклидовой геометрии, сумма углов любого треугольника равна 180°. И это верно, но только для плоской поверхности, а не для искривлённой. Возьмите глобус и нарисуйте на нём треугольник, начиная с Северного полюса и вниз до экватора, затем вдоль экватора на четверть его длины, после чего обратно назад к Северному полюсу. Стороны такого треугольника окажутся дугами на сфере. По аналогии с прямыми линиями эти дуги будут кратчайшими путями между двумя заданными точками
Сам Гаусс был очень впечатлён своим открытием. Его ассистент, Бернхард Риман, распространил формулу на многомерные континуумы, положив начало новому разделу математики – дифференциальной геометрии. Тем не менее вычисление кривизны пространства в каждой его точке требовало огромной работы, и математики пытались понять, нет ли более простого пути решения этой задачи, пусть даже несколько менее информативного. Они искали более гибкое определение «формы», которым было бы проще пользоваться.
Способ, который они придумали, сейчас называется топологией. Она оперирует качественными характеристиками формы и не требует численных измерений. В топологии два континуума считаются одинаковыми, если один из них можно преобразовать в другой с помощью непрерывной деформации. Например, бублик и кружка с точки зрения топологии неотличимы (гомеоморфны). Представьте, что кружка сделана из какого-то пластичного материала, который можно гнуть, сжимать или растягивать. Сначала вы сплющиваете кружку в диск так, чтобы получился «блин» с ручкой. Затем уминаете «блин» до тех пор, пока он не станет одной толщины с ручкой, и получаете кольцо. Теперь остаётся лишь немного его сгладить – и вуаля, перед вами бублик. В действительности, согласно топологии, и бублик, и кружка являются просто-напросто деформированной каплей, к которой зачем-то приделали ручку.
Такая топологическая версия «формы» позволяет задать вопрос, является ли Вселенная сферической, наподобие английского пончика (без дырки) или же американского (с дыркой), а может быть, это вообще что-то гораздо более сложное? Выяснилось, что подкованный в топологии муравей сумеет многое узнать о форме своего мира, если будет обвязывать его замкнутыми верёвочными петлями и наблюдать за их поведением. Если в таком мире имеется дыра, муравей может обвязать её своей петлёй, а вот стянуть её в математическую точку и при этом не разорвать невозможно. Если дыр несколько, муравей может обвязывать петлёй каждую из них и в результате подсчитать их количество и расположение. Если же в его мире дыр нет, муравей сможет стягивать свою петлю до тех пор, пока вся она не стянется в математическую точку.
К подобному «муравьиному» мышлению, обусловленному внутренними особенностями пространства, нужно привыкнуть, однако без него современную космологию не понять, поскольку общая теория относительности Эйнштейна, используя риманово обобщение уравнений Гаусса, определяет гравитацию как искривление пространства-времени.