Гиперсфера сыграла важную роль в ранней работе Анри Пуанкаре, одного из основоположников современной топологии. Он трудился приблизительно в конце XIX века и был одним из двух или трех ведущих математиков тех лет. Он едва не опередил Эйнштейна с созданием специальной теории относительности[337]
. В начале 1900-х Пуанкаре разработал многие из стандартных инструментов топологии. Он знал, что гиперсферы играют фундаментальную роль в трехмерной топологии, так же, как сферы в двумерной. В частности, у гиперсферы нет дыр, похожих на дыры в бублике, поэтому в определенном смысле она представляет собой простейшее топологическое пространство с тремя измерениями. Пуанкаре предположил без доказательства, что верно и обратное: любое трехмерное топологическое пространство без дыр обязательно окажется гиперсферой.Однако в 1904 году он обнаружил более сложный объект, додекаэдрическое пространство, которое, несмотря на то, что в нем не было дыр, гиперсферой не являлось. Существование этой конкретной формы свело на нет первоначальное предположение. Эта неожиданная осечка заставила его добавить еще одно условие, которое, как он надеялся, сможет охарактеризовать гиперсферу в полной мере. Двумерная поверхность является сферой тогда и только тогда, когда любую петлю можно расталкивать в стороны вплоть до того момента, когда она целиком не окажется в одном месте. Пуанкаре предположил, что точно такое же свойство характеризует гиперсферу в трех измерениях. Он оказался прав, однако на доказательство этого факта у математиков ушло почти целое столетие. В 2003 году молодой житель России, Григорий Перельман, успешно доказал гипотезу Пуанкаре. За это математик был удостоен приза в миллион долларов, от которого он, как известно, отказался.
Хотя гиперсферическая Вселенная это самый простой и очевидный вариант, она не находит широкого подтверждения с позиции экспериментальных данных. Когда-то самой простой и очевидной формой Земли была плоскость, и только посмотрите, к чему это привело. Так что космологи отказались от неявного допущения о гиперсферической форме Вселенной и стали обдумывать другие варианты. Одна из наиболее известных гипотез в течение недолгого времени привлекала внимание новостных СМИ утверждением о том, что Вселенная имеет форму футбольного мяча. (на заметку американским читателям: это мяч для игры в соккер) Идея полюбилась редакторам, потому что читатели, может быть, и не разбирались в космологии, зато наверняка знали, как выглядит футбольный мяч[338]
.Заметьте, это не сфера. Футбольный мяч в тот момент и лишь на короткий срок сменил старую форму, состоявшую из восемнадцати прямоугольных лоскутов, сшитых в некое подобие куба, на более эффектный вид двенадцать пятиугольников и двенадцать шестиугольников, сшитых или склеенных друг с другом в форме усеченного икосаэдра[339]
. Это геометрическое тело известно со времен Древней Греции, и нам повезло, что, несмотря на такое название, мы можем говорить о нем, как о футбольном мяче. За одним исключением в общем, на самом деле речь идет вовсе не об усеченном икосаэдре. Это трехмерная гиперповерхность, и к усеченному икосаэдру она имеет лишь отдаленное отношение. Это футбольный мяч из другого измерения.Точнее, это додекаэдрическое пространство Пуанкаре.
Чтобы получить такое пространство, вначале нужно взять додекаэдр. Это геометрическое тело с двенадцатью гранями в виде правильного пятиугольника; он похож на футбольный мяч без шестиугольников. Затем противоположные грани склеиваются друг с другом с настоящим додекаэдром так не получится. Но с точки зрения математики можно сделать вид, будто различные грани на самом деле совпадают, не сгибая при этом саму фигуру, чтобы соединить их друг с другом, как мы видели на примере плоского тора; топологи, тем не менее, настаивают на термине «склейка».
Додекаэдрическое пространство это более хитроумная вариация плоского тора. Напомним, что плоский тор это результат склейки противоположных сторон квадрата. Для построения додекаэдрического пространства, которое не является поверхностью, а представляет собой трехмерный объект, нужно взять додекаэдр и склеить противоположные грани. В результате получится трехмерное топологическое пространство. У него, как и у тора, нет границы, и причина та же самая: то, что рискует провалиться сквозь одну из граней, сразу же оказывается внутри противоположной, а значит, выбраться наружу нельзя. Его размер конечен. В нем, как и в гиперсфере, нет дыр, так что будь вы слегка наивным топологом, могли бы поддаться соблазну и решить, будто это пространство соответствует все критериям гиперсферы и тем не менее, оно отличается от гиперсферы, даже с точки зрения топологии.