Все это прекрасно, когда мошенничество уже обнаружено, но лучше было бы вообще предотвращать публикацию жульнических статей в журналах. И вот тут нам могут помочь технологии. Исследователи разрабатывают все более эффективные алгоритмы, способные выявлять в научных статьях поддельные данные и отыскивать нарушения вроде дублирования изображений[688]
. Интересно будет сравнить технологические умения с навыками опытного человека, распознающего дублирования изображений, вроде Элизабет Бик из третьей главы, но теоретически алгоритмы должны сделать задачу выявления неправомерных манипуляций с данными гораздо менее трудоемкой. Журналы могли бы требовать, чтобы каждая представленная на рассмотрение работа оценивалась подобными алгоритмами (а также другими, о которых мы говорили ранее, например GRIM и statcheck), дабы все подозрительное было найдено еще до начала рецензирования. Еще журналы могли бы использовать специальные программы, выискивающие в тексте любой потенциальный плагиат или самоплагиат[689].Подобные алгоритмы также помогают бороться с небрежностью[690]
. Существенная часть огрехов, выявленных алгоритмом statcheck, – похоже, банальные ошибки, возникшие, когда исследователи копировали числа из программ статистического анализа и вставляли в текстовый редактор, который использовали для написания статьи. Прогоняя готовый текст статьи через statcheck, можно было бы отлавливать такие ошибки до того, как они попадут в литературу. Однако технологии могли бы помочь предотвращать даже появление подобных ошибок. В последние годы было разработано программное обеспечение, которое объединяет статистический анализ и обработку текста в одной программе, автоматически заполняя все необходимые для статьи таблицы и создавая необходимые иллюстрации[691]. Данные могут ускользнуть от внимания отвлекающегося и ошибающегося ученого, но, поскольку вся цепочка действий от данных до статьи находится у всех на виду, намеренное манипулирование цифрами или анализом тоже становится сложнее[692].Но не стоит этими новыми технологиями обольщаться – любое программное обеспечение подвержено своим собственным ошибкам. Приведем один особенно постыдный пример: выяснилось, что приблизительно в 20 % статей по генетике, в которых использовалась электронная таблица Microsoft Excel
для перечисления изученных генов, из-за автозамены такие названия генов, как SEPT2 и MARCH1, преобразовывались в даты[693]. Результаты работы автоматического программного обеспечения должны тщательно проверяться людьми, как минимум до тех пор, пока мы не будем уверены, что расправились со всеми “глюками”. В теории, однако, кажется, что многие рутинные научные задачи могли бы аккуратнее выполняться нечеловеческим разумом: анализ больших массивов данных для выявления закономерностей; перелопачивание чисел в научной литературе для выработки консенсуса; даже интерпретация изображений блотов, клеток и сканов мозга. Учитывая огромное количество ошибок, встречающихся в научных работах, и то, как легко можно было бы избежать многих из них с помощью более автоматизированного процесса написания статей, в конечном итоге может оказаться неэтичным полагаться при выполнении этих задач только на людей.
Одна из проблем, на которую мы постоянно наталкивались, – извечное пристрастие ученых к новизне. Хотя новые, захватывающие результаты движут научный прогресс, мы видели, как одержимость “революционными” открытиями привела к тому, что целые области исследований основываются на шатких, невоспроизводимых доказательствах. Перефразируя слова биолога Оттолин Лейзер, можно сказать, что смысл революционности – в непременном строительстве нового; если вы только и делаете, что разрушаете все старое, в итоге вы останетесь ни с чем[694]
. Как нам сделать надежные результаты приоритетнее новых? Как побороть публикационное смещение, гарантируя публикацию всех результатов – неважно, новаторские они или отрицательные?Одно из предложений таково: нужно создать журналы, специализирующиеся на публикации отрицательных результатов, обеспечив тем самым более привлекательную альтернативу “картотечному ящику”. Так, например, в 2002 году именно с этой целью был создан журнал “Отрицательные результаты в биомедицине” (Journal of Negative Results in Biomedicine).
Задумка хорошая, но, наверное, неудивительно, что едва ли кто-то жаждал, чтобы его исследование вышло в низкостатусном журнале отрицательных результатов, который “определяли как издание, публикующее статьи, которые ни один другой журнал не примет”[695]. Журнал закрылся в 2017 году – необычная судьба для научного издания в мире, стонущем под грузом новых статей[696].