А началось все с того, что мы с женой решили застраховаться. В заявлении говорилось, что мы должны предоставить результаты анализа крови. Через неделю-две нам отказали в страховании. Крайне экономная страховая компания выслала нам два коротеньких извещения, которые были одинаковы, только текст в извещении на имя жены оказался на одно слово длиннее, чем текст в извещении на мое имя. В моем извещении говорилось, что компания отказывает мне в страховании на основании «результатов Вашего анализа крови». В извещении для моей жены говорилось, что компания не может застраховать ее жизнь на основании «результатов анализа крови Вашего мужа». Когда выяснилось, что в этом самом слове, «муж», и кроется разгадка того, почему добросердечные страховщики отказывают нам в страховании, я, действуя интуитивно, пошел к врачу и сдал анализ на ВИЧ. Результаты оказались положительными. И хотя я поначалу был слишком потрясен, чтобы поинтересоваться у врача о высказанной им вероятности, позднее мне стало известно, что он вычислил мой 1 из 1 000 шанс на жизнь из следующих статистических данных: лишь в 1 случае из 1 000 анализ на ВИЧ может дать положительный результат, пусть даже кровь при этом и не заражена вирусом СПИДа. Может показаться, что врач сказал то же самое, однако это не так. Врач перепутал вероятность того, что результаты моего анализа будут положительными, если я не являюсь ВИЧ-инфицированным, с вероятностью того, что я могу и не быть ВИЧ-инфицированным, даже если результаты моего анализа окажутся положительными.
Чтобы разобраться, где ошибся врач, прибегнем к методу Байеса. Первым делом очертим пространство элементарных событий. Можно включить в него всех, кто когда-либо сдавал анализы на ВИЧ, но мы получим более точные результаты, если примем во внимание некоторые дополнительные, имеющие непосредственное отношение к теме сведения обо мне: рассмотрим только гетеросексуальных, не принимающих наркотиков белых американцев мужского пола, которые сдавали анализы на ВИЧ. (Далее мы увидим, какое это имеет значение.)
Теперь, когда мы знаем, кого следует включить в пространство элементарных событий, распределим членов этого пространства по категориям. Вместо деления на мальчиков и девочек выберем деление на тех, кто у кого анализы оказались ВИЧ-положительными и кто ВИЧ-положителен (истинная положительность), тех, у кого анализы оказались положительными, но кто на самом деле не положителен (ложная положительность), тех, у кого анализы оказались ВИЧ-отрицательными и кто ВИЧ-отрицателен (истинная отрицательность), тех, у кого анализы оказались ВИЧ-отрицательными, но кто на самом деле ВИЧ-положителен (ложная отрицательность).
Наконец задаем вопрос: сколько людей в каждой из этих категорий? Предположим, мы рассматриваем изначально население из 10 000 человек. Пользуясь статистическими данными Центра по контролю и профилактике заболеваемости, подсчитаем, что в 1989 г. около 1 из 10 000 гетеросексуальных, не принимающих наркотиков белых американцев мужского пола, сдавших анализы, оказались ВИЧ-инфицированными{107}
. Предположим, что в категории «ложная отрицательность» показатель равен 0, тогда около 1 человека из каждых 10 000 сдавших анализы окажется положительным из-за наличия инфекции. К тому же поскольку показатель «ложной отрицательности» равен, по словам врача, 1 из 1 000, наберется около 10 тех, кто не заражен ВИЧ, однако анализы которых тем не менее окажутся положительными. У остальных 9 989 человек из 10 000, составляющих пространство элементарных событий, результаты анализов окажутся отрицательными.Теперь «урежем» пространство элементарных событий — включим в него только тех, результаты анализов которых оказались положительными. У нас останется 10 человек из категории «ложная положительность» и 1 человек из категории «истинная положительность». Другими словами, лишь 1 человек из 11, результаты анализов которых оказались положительными, действительно ВИЧ-инфицирован. Врач сказал мне: вероятность того, что в анализе ошибка — на самом же деле я был совершенно здоров, — равна 1 из 1 000. А на самом деле ему следовало сказать следующим образом: «Не волнуйтесь, шансы на то, что вы на самом деле не инфицированы, выше 10 из 11». В моем случае на результаты пробы для выявления скрытой формы заболевания повлияли определенные метки, которые присутствовали в моей крови, хотя вирус, ради которого и брали пробу, отсутствовал.