Читаем (Не)совершенная случайность. Как случай управляет нашей жизнью полностью

Существование теории, благодаря которой Байес нам и известен, обнаружилось 23 декабря 1763 г., когда другой священнослужитель и математик, Ричард Прайс, прочел в Королевском обществе, этой британской национальной академии наук, доклад по научной работе. Работа, названная Байесом «Эссе о решении проблем в теории случайных событий», была опубликована в «Philosophical Transactions» Королевского общества в 1764 г. Байес оставил работу Прайсу по завещанию, вместе со 100 фунтами. По свидетельству Прайса, этого «как я полагаю, священника из Ньюингтон Грин», как высказался о нем Байес, автор «Эссе» умер спустя четыре месяца после того, как написал завещание{104}.

Хотя Байес и упомянул Ричарда Прайса вскользь, мимоходом, на самом деле Прайс отнюдь не был никому не известным священником. Его знали как пропагандиста свободы вероисповедания, друга Бенджамина Франклина, человека, которому Адам Смит доверил критический обзор некоторых частей чернового варианта «Исследования о природе и причинах богатства народов». Кроме всего прочего, Ричард Прайс был известным математиком. В заслугу ему ставят также основание страховой статистики, история которой началась с того, что в 1765 г. трое служащих из страховой компании «Equitable Society» обратились к Прайсу за помощью. Спустя шесть лет Прайс опубликовал свою работу в виде книги под названием «Заметки о страховых выплатах». И хотя книга, своего рода Библия для экспертов-статистиков из страховых учреждений, прослужила вплоть до XIX в., Прайс по-видимому недооценил среднюю продолжительность жизни — из-за недостаточности сведений и ненадежного метода подсчетов. В результате неоправданно завышенные страховые взносы обогатили его приятелей из «Equitable Society». С другой стороны, незадачливое британское правительство, производившее свои ежегодные выплаты исходя из таблиц Прайса, потерпело убытки: к ожидаемому по табличным данным сроку пенсионеры по-прежнему оставались в добром здравии.

Как я уже говорил, Байес разработал условную вероятность в попытке ответить на тот же вопрос, который увлек Бернулли: как по известному факту события вычислить вероятность того, что оно было вызвано данной причиной? Если в процессе клинических испытаний лекарство помогло 45 пациентам из 60, каковы шансы того, что лекарство подействует и на следующего пациента? Если оно помогло 600 000 пациентов из 1 млн, шансы того, что оно подействует, приближаются к 60%. Однако к какому выводу вы придете, если будете исходить из испытаний меньшего масштаба? Байес задался и другим вопросом: если перед испытаниями у вас были основания верить в то, что лекарство эффективно лишь на 50%, насколько весомыми окажутся новые сведения для ваших дальнейших оценок? Наш жизненный опыт в основном выглядит следующим образом: мы наблюдаем сравнительно небольшую выборку исходов, а уже из этого выводим информацию и приходим к заключению относительно качеств, которые привели к подобным исходам. Как нам следует выводить информацию?

Байес задумал решить задачу через метафору{105}. Предположим, нам выдали квадратный стол и два мяча. Первый мяч мы катим по столу таким образом, чтобы имели место равные вероятности: мяч остановится в любой точке. Наша цель — определить, не глядя, где именно вдоль всей оси слева направо мяч остановился. При этом наше орудие — второй мяч, который мы поначалу тоже будем неоднократно катать по столу тем же самым образом, что и первый. С каждым разом специально поставленный для этого человек будет записывать, где именно, справа или слева от первого мяча, остановился второй мяч. В конце человек сообщит нам общее количество попыток, во время которых второй мяч останавливался в каждом из двух основных направлений. Первый мяч представляет собой то неизвестное, о чем мы хотели узнать, второй мяч представляет собой свидетельства, которые нам удалось собрать. Если второй мяч будет раз за разом останавливаться справа от первого мяча, можно быть в достаточной степени уверенным, что первый мяч останавливается в дальнем левом углу стола. Если он останавливается — не так последовательно, раз за разом — мы будем в меньшей степени уверенными в своем выводе или же предположим, что первый мяч находится в дальнем правом углу. Байес продемонстрировал, как, опираясь на сведения о втором мяче, определять точную вероятность того, что первый мяч находится в любой данной точке рядом с осью слева направо. И продемонстрировал, как при наличии дополнительных сведений можно пересмотреть первоначальные подсчеты. Согласно терминологии Байеса, первоначальные подсчеты называются априорной вероятностью, а новые предположения — апостериорной вероятностью.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже