Студент попросил профессора помочь с опровержением этого утверждения. Профессор согласился. И у него были на то веские причины, потому как Томас Байес, родившийся в Лондоне в 1701 г., действительно был священником, имевшим приход в Танбридж-Уэлс. Байес умер в 1761 г и был похоронен на территории лондонского парка Банхилл-Филдс, в той же самой могиле, что и его отец Джошуа, также служитель церкви. Томас Байес в самом деле изобрел теорию «условных вероятностей», чтобы доказать, что теория вероятностей может распространяться не только на независимые события, но и на события, чьи исходы зависят друг от друга. Например, и вероятность того, что случайно выбранный человек окажется психически больным, и вероятность того, что случайно выбранный человек утверждает, будто жена читает его мысли, весьма низки, однако вероятность того, что человек психически болен, если он утверждает, будто жена читает его мысли, уже гораздо выше, как и вероятность того, что человек утверждает, будто жена читает его мысли, если при этом он психически болен. Как все эти вероятности связаны между собой? Ответ следует искать в области условных вероятностей.
Профессор дал показание под присягой: подтвердил реальное существование Байеса и его теории, хотя и не высказался в поддержку специфических и сомнительных вычислений, которые, как утверждал теперь уже бывший студент, доказывали его вменяемость. Жалость вызывает не сам шизофреник, человек уже немолодой, а команда врачей и юристов, которую сколотило обвинение. Печален тот факт, что некоторые люди больны шизофренией, но хотя лекарства и могут помочь в излечении болезни, они не в силах побороть невежество. Как мы дальше убедимся, неосведомленность об идеях Томаса Байеса лежит в основе многих серьезных ошибок, будто то медицинские диагнозы или судебные решения. Во время же обучения будущих врачей и юристов с невежеством этим редко когда борются.
И в наши дни мы выносим суждения согласно теории Байеса. В одном фильме рассказывается об адвокате, у которого была замечательная работа, очаровательная жена, идеальная семья. Он любил жену и дочь, но ощущал в своей жизни некую пустоту. Однажды вечером он возвращается на трамвае домой и замечает красивую женщину — она с задумчивым видом смотрит из окна танцевальной студии. Проезжая на следующий день и через день, он ищет ее взглядом, с каждым разом все больше подпадая под ее чары. Наконец в один из вечеров он поддается порыву: сходит с электрички и записывается на танцевальные занятия в студию, надеясь увидеть ту женщину. Однако когда видит ее вблизи, чарующий образ, который преследовал его в воображении, улетучивается. Тем не менее он увлекается, однако не той женщиной, а танцами.
Свое увлечение он скрывает и от семьи, и от коллег по работе, выдумывая разные предлоги, чтобы вечером ускользнуть из дому. Наконец жена узнает, что он вовсе не засиживается за работой допоздна, как он говорит. Она думает: вероятность того, что он лжет о сверхурочной работе, гораздо больше при условии, что у него любовная связь, нежели при условии, что никакой любовной связи нет. И приходит к выводу: он все-таки лжет. Однако жена ошибается не столько в своих выводах, сколько в рассуждениях: она путает вероятность того, что муж избегает ее, если у него связь, с вероятностью того, что у него связь, если он ее избегает.
Это довольно распространенная ошибка. Предположим, начальник стал отвечать на ваши электронные письма с запозданием. Многие сочтут это знаком скорого заката собственной карьеры, потому что если вашей карьере подходит конец, велика вероятность того, что босс перестает отвечать на ваши письма оперативно. Однако босс может запаздывать с ответом и потому, что занят или у него заболела мать. Так что вероятность того, что ваша карьера подходит к концу, если начальник отвечает на ваши письма не сразу, гораздо ниже, чем вероятность того, что ваш начальник станет отвечать на письма с задержкой, если вас ждет увольнение. Своей привлекательностью многие теории тайных сговоров обязаны неправильному пониманию вышеприведенных логических выкладок. То есть все дело в путанице: вероятность того, что ряд событий произойдет, если события эти являются результатом тайного сговора, путают с вероятностью того, что тайный сговор существует, если имеет место ряд событий.