К счастью, я систематически коллекционировал древние кости из разных музеев, так что Алекс смог немедленно опробовать наши идеи на имеющемся материале. Он отобрал зуб мамонта, в котором осталось особенно много мтДНК. Этот зуб выкопали из вечной мерзлоты, когда строили главное шоссе на Аляске, идущее от северо-востока Британской Колумбии до Фэрбенкса. Шоссе строили в страшной спешке во время Второй мировой войны. Зуб нашли, положили в большую коробку и оставили ее в Американском музее естественной истории, там он с тех пор и лежал. Чтобы облегчить работу по выделению ДНК, мы наметили сегмент ядерного генома, содержащего часть гена, известного как 28S рДНК; он кодирует одну из молекул РНК рибосом, органелл, управляющих синтезом белков в клетке. Преимущество этого гена нам виделось в том, что в одной клетке содержалось несколько сотен его реплик. И получалось, что после смерти животного подобных фрагментов оставалось примерно столько же, сколько и мтДНК. К моему великому облегчению и радости, у Алекса получилось амплифицировать этот рибосомальный ген. Он секвенировал размноженные копии из вытяжки мамонта и реконструировал нуклеотидную последовательность этого гена, используя методику перекрывающихся участков. Эту методику мы отработали, еще когда изучали неандертальскую мтДНК. Затем Алекс взялся сравнить полученную последовательность с соответствующими цепочками африканских и индийских слонов, ближайших родственников мамонта. У меня тогда по поводу загрязнений началась прямо-таки паранойя, и я запретил Алексу и вообще кому-то из лаборатории работать с ДНК слонов до тех пор, пока Алекс не получит результат по мамонтам. И вот теперь, выйдя наконец из “чистой комнаты”, Алекс занялся секвенированием гена 28S рДНК слонов, применив тот же праймер, что и для мамонта. И получил ту же последовательность. Соответствующий фрагмент ДНК африканских слонов отличался все же по двум позициям, что говорило о том, что мамонты ближе к индийским, чем к африканским слонам. Мы, конечно, сравнили мамонтов со слонами, но не это являлось целью всей затеи: нам нужно было выделить древнюю ядерную ДНК. Чтобы подтвердить возраст, мы отправили ткань зуба того мамонта на углеродное датирование. И когда в ответном сообщении открылось “14 тысяч лет”, я в первый раз за много месяцев удовлетворенно расслабился. Так мы впервые в истории получили ядерную ДНК позднего плейстоцена.
Вдохновленный результатом, Алекс придумал праймеры для амплификации двух коротких участков фрагмента особого гена, который носит название “ген фактора Виллебранда”; в геноме слона содержится только по одному такому гену. Фактор Виллебранда — его ген записывают как vWF — это белок крови, который помогает тромбоцитам прикрепляться к поврежденным кровеносным сосудам. Мы выбрали именно этот ген, так как его нуклеотидная последовательность как у слонов, так и у многих других млекопитающих уже была известна, и нам оставалось только выделить его из тканей мамонта и сравнить с уже имеющимися, современными. Я глазам не поверил, когда на очередном еженедельном лабораторном обсуждении Алекс показал картинки с полосками в геле, и это было не что иное, как амплифицированные фрагменты гена мамонта. Он повторил эксперимент дважды, каждый раз с заново приготовленными экстрактами из мамонтовой кости. Среди множества клонов, которые он секвенировал, были хорошо видны ошибки в отдельных молекулах ДНК, появляющиеся или из-за химического разрушения древних ДНК, или из-за пристраивания неправильного нуклеотида к цепочке ДНК при ПЦР (рис. 9.1). Но для одной из позиций Алекс заметил интересную закономерность. Он секвенировал в общей сложности тридцать клонов, проведя для каждого три независимые серии ПЦР. В одной из позиций у пятнадцати клонов стояло Ц, у четырнадцати — Т и у одного А. Единственный случай с аденином (А) мы посчитали ошибкой ДНК-полимеризации, но остальная картинка — у меня сердце замерло… Это конкретное место в цепочке являлось тем, что генетики называют гетерозиготной позицией, или, иначе, точечным нуклеотидным полиморфизмом (сокращенно — SNP, СНИП). В этом месте две копии данного гена, полученные от мамы-мамонтихи и папы-мамонта, различались. И нам удалось увидеть самую первую гетерозиготную позицию, СНИП, ледникового периода. То есть мы имели дело с генетикой в чистом виде, с генетикой в действии, если хотите, — вот вам ядерный ген, у которого в популяции встречается два варианта. Дело пошло на лад. Если нам удалось прочитать оба варианта этого гена, тогда, в принципе, остальные части генома тоже могут быть доступны. И таким образом, откроется возможность, по крайней мере теоретически, получать генетическую информацию о видах, вымерших много тысяч лет назад.