Читаем Нейросети. Обработка аудиоданных полностью

1. Для каждого примера в обучающем наборе данных модель делает предсказание. Это предсказание может быть числовым значением, таким как цена дома или температура, и модель пытается предсказать это значение на основе входных признаков.

2. Разница между предсказанным значением и фактическим значением (истинным ответом) для каждого примера вычисляется. Эта разница называется "остатком" или "ошибкой" и может быть положительной или отрицательной.

3. Эти ошибки возводятся в квадрат, что позволяет избежать проблем с отрицательными и положительными ошибками, которые могут взаимно компенсироваться. Ошибки возводятся в квадрат, чтобы большим ошибкам присваивать больший вес.

4. Затем вычисляется среднее значение всех квадратов ошибок. Это среднее значение является итоговой MSE.

Формула MSE для одного примера (i) выглядит следующим образом:

MSE(i) = (Предсказанное значение(i) – Фактическое значение(i))^2

Для всего набора данных с N примерами формула MSE выглядит так:

MSE = (1/N) * ? (Предсказанное значение(i) – Фактическое значение(i))^2 от i=1 до N

Чем меньше значение MSE, тем ближе предсказания модели к фактическим данным, и, следовательно, модель считается более точной. Однако стоит помнить, что MSE чувствителен к выбросам и может быть неподходящим для задач, где ошибки в предсказаниях могут иметь разную важность.

– 

Кросс

-

энтропия

:

Широко применяется в задачах классификации и измеряет разницу между распределением вероятностей

,

предсказанным моделью

,

и фактическими метками классов

.

Кросс-энтропия (Cross-Entropy) – это важная функция потерь, широко используемая в задачах классификации, особенно в машинном обучении и глубоком обучении. Она измеряет разницу между распределением вероятностей, предсказанным моделью, и фактическими метками классов в данных. Кросс-энтропия является мерой того, насколько хорошо модель приближает вероятностное распределение классов в данных.

Принцип работы кросс-энтропии заключается в сравнении двух распределений: предсказанных вероятностей классов моделью и фактических меток классов в данных. Её можно описать следующим образом:

1. Для каждого примера в наборе данных модель выдает вероятности принадлежности этого примера к разным классам. Эти вероятности могут быть представлены в виде вектора вероятностей, где каждый элемент вектора соответствует вероятности принадлежности примера к конкретному классу.

2. Фактичные метки классов для каждого примера также представляются в виде вектора, где один элемент вектора равен 1 (класс, к которому пример принадлежит), а остальные элементы равны 0.

3. Сравнивая вероятности, предсказанные моделью, с фактичными метками классов, вычисляется кросс-энтропия для каждого примера. Формула для вычисления кросс-энтропии для одного примера i выглядит так:

Cross-Entropy(i) = -? (Фактическая вероятность(i) * log(Предсказанная вероятность(i)))

Где ? означает суммирование по всем классам.

4. Итоговая кросс-энтропия для всего набора данных вычисляется как среднее значение кросс-энтропии для всех примеров. Это позволяет оценить, насколько хорошо модель соответствует фактичным данным.

Кросс-энтропия имеет следующие важные характеристики:

– Она может быть использована для многоклассовой и бинарной классификации.

– Она штрафует модель за неверные уверенные предсказания вероятностей, что позволяет сделать её более уверенной и точной.

– Она штрафует большие различия между фактическими метками и предсказанными вероятностями сильнее, что делает её чувствительной к выбросам.

Выбор кросс-энтропии как функции потерь в задачах классификации обусловлен тем, что она стимулирует модель предсказывать вероятности классов, что часто является необходимым в задачах классификации.

– 

Категориальная кросс

-

энтропия

:

Используется в задачах многоклассовой классификации

,

где классы не взаимосвязаны

.

Категориальная кросс-энтропия (Categorical Cross-Entropy) – это функция потерь, которая часто применяется в задачах многоклассовой классификации, где классы не взаимосвязаны и каждый пример может быть отнесен к одному и только одному классу из набора классов. Эта функция потерь измеряет расхождение между вероятностным распределением, предсказанным моделью, и фактичными метками классов.

Применение категориальной кросс-энтропии в задачах многоклассовой классификации выглядит следующим образом:

1. Для каждого примера в наборе данных модель предсказывает вероятности принадлежности этого примера к каждому классу. Эти вероятности образуют вектор вероятностей, где каждый элемент соответствует вероятности принадлежности к одному из классов.

2. Фактичные метки классов для каждого примера также представляются в виде вектора, где один элемент равен 1 (класс, к которому пример принадлежит), а остальные элементы равны 0.

3. Сравнивая вероятности, предсказанные моделью, с фактичными метками классов, вычисляется категориальная кросс-энтропия для каждого примера. Формула для вычисления категориальной кросс-энтропии для одного примера i выглядит следующим образом:

Перейти на страницу:

Похожие книги

1917–1920. Огненные годы Русского Севера
1917–1920. Огненные годы Русского Севера

Книга «1917–1920. Огненные годы Русского Севера» посвящена истории революции и Гражданской войны на Русском Севере, исследованной советскими и большинством современных российских историков несколько односторонне. Автор излагает хронику событий, военных действий, изучает роль английских, американских и французских войск, поведение разных слоев населения: рабочих, крестьян, буржуазии и интеллигенции в период Гражданской войны на Севере; а также весь комплекс российско-финляндских противоречий, имевших большое значение в Гражданской войне на Севере России. В книге используются многочисленные архивные источники, в том числе никогда ранее не изученные материалы архива Министерства иностранных дел Франции. Автор предлагает ответы на вопрос, почему демократические правительства Северной области не смогли осуществить третий путь в Гражданской войне.Эта работа является продолжением книги «Третий путь в Гражданской войне. Демократическая революция 1918 года на Волге» (Санкт-Петербург, 2015).В формате PDF A4 сохранён издательский дизайн.

Леонид Григорьевич Прайсман

История / Учебная и научная литература / Образование и наука
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода

Правда о самом противоречивом князе Древней Руси.Книга рассказывает о Георгии Всеволодовиче, великом князе Владимирском, правнуке Владимира Мономаха, значительной и весьма противоречивой фигуре отечественной истории. Его политика и геополитика, основание Нижнего Новгорода, княжеские междоусобицы, битва на Липице, столкновение с монгольской агрессией – вся деятельность и судьба князя подвергаются пристрастному анализу. Полемику о Георгии Всеволодовиче можно обнаружить уже в летописях. Для церкви Георгий – святой князь и герой, который «пал за веру и отечество». Однако существует устойчивая критическая традиция, жестко обличающая его деяния. Автор, известный историк и политик Вячеслав Никонов, «без гнева и пристрастия» исследует фигуру Георгия Всеволодовича как крупного самобытного политика в контексте того, чем была Древняя Русь к началу XIII века, какое место занимало в ней Владимиро-Суздальское княжество, и какую роль играл его лидер в общерусских делах.Это увлекательный рассказ об одном из самых неоднозначных правителей Руси. Редко какой персонаж российской истории, за исключением разве что Ивана Грозного, Петра I или Владимира Ленина, удостаивался столь противоречивых оценок.Кем был великий князь Георгий Всеволодович, погибший в 1238 году?– Неудачником, которого обвиняли в поражении русских от монголов?– Святым мучеником за православную веру и за легендарный Китеж-град?– Князем-провидцем, основавшим Нижний Новгород, восточный щит России, город, спасший независимость страны в Смуте 1612 года?На эти и другие вопросы отвечает в своей книге Вячеслав Никонов, известный российский историк и политик. Вячеслав Алексеевич Никонов – первый заместитель председателя комитета Государственной Думы по международным делам, декан факультета государственного управления МГУ, председатель правления фонда "Русский мир", доктор исторических наук.В формате PDF A4 сохранен издательский макет.

Вячеслав Алексеевич Никонов

История / Учебная и научная литература / Образование и наука