Читаем Нейросети. Обработка аудиоданных полностью

Categorical Cross-Entropy(i) = -? (Фактическая вероятность(i) * log(Предсказанная вероятность(i)))

Где ? означает суммирование по всем классам.

4. Итоговая категориальная кросс-энтропия для всего набора данных вычисляется как среднее значение категориальной кросс-энтропии для всех примеров.

Важно отметить, что в задачах многоклассовой классификации категориальная кросс-энтропия учитывает, как хорошо модель предсказывает вероятности для всех классов. Если предсказания близки к фактическим меткам классов, то значение категориальной кросс-энтропии будет близким к нулю, что указывает на хорошую производительность модели.

Важным аспектом применения категориальной кросс-энтропии является использование активационной функции "Softmax" на выходном слое модели, чтобы преобразовать необработанные значения в вероятности классов. Категориальная кросс-энтропия обычно работает с этими вероятностями, что делает её подходящей для задач многоклассовой классификации.

– 

Бинарная кросс

-

энтропия

:

Применяется в задачах бинарной классификации

,

где есть два класса

.

Бинарная кросс-энтропия (Binary Cross-Entropy), также известная как логистическая потеря (Logistic Loss), является функцией потерь, применяемой в задачах бинарной классификации, где есть два класса: класс "положительный" и класс "отрицательный". Эта функция потерь измеряет расхождение между предсказанными вероятностями и фактичными метками классов.

Применение бинарной кросс-энтропии в задачах бинарной классификации выглядит следующим образом:

1. Модель предсказывает вероятности для класса "положительный" (обычно обозначенного как класс 1) и вероятности для класса "отрицательный" (обычно обозначенного как класс 0) для каждого примера. Обычно это делается с использованием активационной функции "Sigmoid", которая преобразует необработанные выходы модели в вероятности, лежащие в интервале от 0 до 1.

2. Фактичные метки классов для каждого примера также представляются в виде бинарного вектора, где один элемент вектора равен 1 (класс 1 – "положительный"), а другой элемент равен 0 (класс 0 – "отрицательный").

3. Сравнивая предсказанные вероятности моделью с фактичными метками классов, вычисляется бинарная кросс-энтропия для каждого примера. Формула для вычисления бинарной кросс-энтропии для одного примера i выглядит следующим образом:

Binary Cross-Entropy(i) = -[Фактичная метка(i) * log(Предсказанная вероятность(i)) + (1 – Фактичная метка(i)) * log(1 – Предсказанная вероятность(i))]

4. Итоговая бинарная кросс-энтропия для всего набора данных вычисляется как среднее значение бинарной кросс-энтропии для всех примеров.

Бинарная кросс-энтропия имеет следующие ключевые особенности:

– Она является подходящей функцией потерь для задач бинарной классификации, где прогнозируется принадлежность к одному из двух классов.

– Она штрафует модель за неверные и неуверенные предсказания, что способствует обучению более уверенных классификаций.

– Она легко интерпретируется и может быть использована для оценки вероятностных предсказаний модели.

Бинарная кросс-энтропия является стандартным выбором функции потерь в задачах бинарной классификации и широко используется в таких приложениях, как определение спама в электронной почте, детекция болезней на медицинских изображениях и другие задачи, где необходимо разделять два класса.

Среднее абсолютное отклонение (MAE): Среднее абсолютное отклонение (Mean Absolute Error, MAE) – это функция потерь, применяемая в задачах регрессии. Она измеряет среднее абсолютное отклонение между предсказанными значениями модели и фактическими значениями в данных. MAE предоставляет информацию о средней величине ошибки модели в абсолютных единицах, что делает её более интерпретируемой.

Принцип работы MAE заключается в следующем:

1. Для каждого примера в наборе данных модель делает предсказание. Это предсказание может быть числовым значением, таким как цена дома или температура, и модель пытается предсказать это значение на основе входных признаков.

2. Разница между предсказанным значением и фактическим значением (истинным ответом) для каждого примера вычисляется. Эта разница называется "остатком" или "ошибкой" и может быть положительной или отрицательной.

3. Абсолютное значение ошибки для каждого примера вычисляется, то есть разница превращается в положительное число.

4. Среднее абсолютное отклонение вычисляется как среднее значение всех абсолютных ошибок.

Формула MAE для одного примера i выглядит следующим образом:

MAE(i) = |Предсказанное значение(i) – Фактическое значение(i)|

Для всего набора данных с N примерами формула MAE выглядит так:

MAE = (1/N) * ? |Предсказанное значение(i) – Фактическое значение(i)| от i=1 до N

Перейти на страницу:

Похожие книги

1917–1920. Огненные годы Русского Севера
1917–1920. Огненные годы Русского Севера

Книга «1917–1920. Огненные годы Русского Севера» посвящена истории революции и Гражданской войны на Русском Севере, исследованной советскими и большинством современных российских историков несколько односторонне. Автор излагает хронику событий, военных действий, изучает роль английских, американских и французских войск, поведение разных слоев населения: рабочих, крестьян, буржуазии и интеллигенции в период Гражданской войны на Севере; а также весь комплекс российско-финляндских противоречий, имевших большое значение в Гражданской войне на Севере России. В книге используются многочисленные архивные источники, в том числе никогда ранее не изученные материалы архива Министерства иностранных дел Франции. Автор предлагает ответы на вопрос, почему демократические правительства Северной области не смогли осуществить третий путь в Гражданской войне.Эта работа является продолжением книги «Третий путь в Гражданской войне. Демократическая революция 1918 года на Волге» (Санкт-Петербург, 2015).В формате PDF A4 сохранён издательский дизайн.

Леонид Григорьевич Прайсман

История / Учебная и научная литература / Образование и наука
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода
1221. Великий князь Георгий Всеволодович и основание Нижнего Новгорода

Правда о самом противоречивом князе Древней Руси.Книга рассказывает о Георгии Всеволодовиче, великом князе Владимирском, правнуке Владимира Мономаха, значительной и весьма противоречивой фигуре отечественной истории. Его политика и геополитика, основание Нижнего Новгорода, княжеские междоусобицы, битва на Липице, столкновение с монгольской агрессией – вся деятельность и судьба князя подвергаются пристрастному анализу. Полемику о Георгии Всеволодовиче можно обнаружить уже в летописях. Для церкви Георгий – святой князь и герой, который «пал за веру и отечество». Однако существует устойчивая критическая традиция, жестко обличающая его деяния. Автор, известный историк и политик Вячеслав Никонов, «без гнева и пристрастия» исследует фигуру Георгия Всеволодовича как крупного самобытного политика в контексте того, чем была Древняя Русь к началу XIII века, какое место занимало в ней Владимиро-Суздальское княжество, и какую роль играл его лидер в общерусских делах.Это увлекательный рассказ об одном из самых неоднозначных правителей Руси. Редко какой персонаж российской истории, за исключением разве что Ивана Грозного, Петра I или Владимира Ленина, удостаивался столь противоречивых оценок.Кем был великий князь Георгий Всеволодович, погибший в 1238 году?– Неудачником, которого обвиняли в поражении русских от монголов?– Святым мучеником за православную веру и за легендарный Китеж-град?– Князем-провидцем, основавшим Нижний Новгород, восточный щит России, город, спасший независимость страны в Смуте 1612 года?На эти и другие вопросы отвечает в своей книге Вячеслав Никонов, известный российский историк и политик. Вячеслав Алексеевич Никонов – первый заместитель председателя комитета Государственной Думы по международным делам, декан факультета государственного управления МГУ, председатель правления фонда "Русский мир", доктор исторических наук.В формате PDF A4 сохранен издательский макет.

Вячеслав Алексеевич Никонов

История / Учебная и научная литература / Образование и наука