Читаем Нейросети. Обработка аудиоданных полностью

Categorical Cross-Entropy(i) = -? (Фактическая вероятность(i) * log(Предсказанная вероятность(i)))

Где ? означает суммирование по всем классам.

4. Итоговая категориальная кросс-энтропия для всего набора данных вычисляется как среднее значение категориальной кросс-энтропии для всех примеров.

Важно отметить, что в задачах многоклассовой классификации категориальная кросс-энтропия учитывает, как хорошо модель предсказывает вероятности для всех классов. Если предсказания близки к фактическим меткам классов, то значение категориальной кросс-энтропии будет близким к нулю, что указывает на хорошую производительность модели.

Важным аспектом применения категориальной кросс-энтропии является использование активационной функции "Softmax" на выходном слое модели, чтобы преобразовать необработанные значения в вероятности классов. Категориальная кросс-энтропия обычно работает с этими вероятностями, что делает её подходящей для задач многоклассовой классификации.

– 

Бинарная кросс

-

энтропия

:

Применяется в задачах бинарной классификации

,

где есть два класса

.

Бинарная кросс-энтропия (Binary Cross-Entropy), также известная как логистическая потеря (Logistic Loss), является функцией потерь, применяемой в задачах бинарной классификации, где есть два класса: класс "положительный" и класс "отрицательный". Эта функция потерь измеряет расхождение между предсказанными вероятностями и фактичными метками классов.

Применение бинарной кросс-энтропии в задачах бинарной классификации выглядит следующим образом:

1. Модель предсказывает вероятности для класса "положительный" (обычно обозначенного как класс 1) и вероятности для класса "отрицательный" (обычно обозначенного как класс 0) для каждого примера. Обычно это делается с использованием активационной функции "Sigmoid", которая преобразует необработанные выходы модели в вероятности, лежащие в интервале от 0 до 1.

2. Фактичные метки классов для каждого примера также представляются в виде бинарного вектора, где один элемент вектора равен 1 (класс 1 – "положительный"), а другой элемент равен 0 (класс 0 – "отрицательный").

3. Сравнивая предсказанные вероятности моделью с фактичными метками классов, вычисляется бинарная кросс-энтропия для каждого примера. Формула для вычисления бинарной кросс-энтропии для одного примера i выглядит следующим образом:

Binary Cross-Entropy(i) = -[Фактичная метка(i) * log(Предсказанная вероятность(i)) + (1 – Фактичная метка(i)) * log(1 – Предсказанная вероятность(i))]

4. Итоговая бинарная кросс-энтропия для всего набора данных вычисляется как среднее значение бинарной кросс-энтропии для всех примеров.

Бинарная кросс-энтропия имеет следующие ключевые особенности:

– Она является подходящей функцией потерь для задач бинарной классификации, где прогнозируется принадлежность к одному из двух классов.

– Она штрафует модель за неверные и неуверенные предсказания, что способствует обучению более уверенных классификаций.

– Она легко интерпретируется и может быть использована для оценки вероятностных предсказаний модели.

Бинарная кросс-энтропия является стандартным выбором функции потерь в задачах бинарной классификации и широко используется в таких приложениях, как определение спама в электронной почте, детекция болезней на медицинских изображениях и другие задачи, где необходимо разделять два класса.

Среднее абсолютное отклонение (MAE): Среднее абсолютное отклонение (Mean Absolute Error, MAE) – это функция потерь, применяемая в задачах регрессии. Она измеряет среднее абсолютное отклонение между предсказанными значениями модели и фактическими значениями в данных. MAE предоставляет информацию о средней величине ошибки модели в абсолютных единицах, что делает её более интерпретируемой.

Принцип работы MAE заключается в следующем:

1. Для каждого примера в наборе данных модель делает предсказание. Это предсказание может быть числовым значением, таким как цена дома или температура, и модель пытается предсказать это значение на основе входных признаков.

2. Разница между предсказанным значением и фактическим значением (истинным ответом) для каждого примера вычисляется. Эта разница называется "остатком" или "ошибкой" и может быть положительной или отрицательной.

3. Абсолютное значение ошибки для каждого примера вычисляется, то есть разница превращается в положительное число.

4. Среднее абсолютное отклонение вычисляется как среднее значение всех абсолютных ошибок.

Формула MAE для одного примера i выглядит следующим образом:

MAE(i) = |Предсказанное значение(i) – Фактическое значение(i)|

Для всего набора данных с N примерами формула MAE выглядит так:

MAE = (1/N) * ? |Предсказанное значение(i) – Фактическое значение(i)| от i=1 до N

Перейти на страницу:

Похожие книги

Биосфера и Ноосфера
Биосфера и Ноосфера

__________________Составители Н. А. Костяшкин, Е. М. ГончароваСерийное оформление А. М. ДраговойВернадский В.И.Биосфера и ноосфера / Предисловие Р. К. Баландина. — М.: Айрис-пресс, 2004. — 576 с. — (Библиотека истории и культуры).В книгу включены наиболее значимые и актуальные произведения выдающегося отечественного естествоиспытателя и мыслителя В. И. Вернадского, посвященные вопросам строения биосферы и ее постепенной трансформации в сферу разума — ноосферу.Трактат "Научная мысль как планетное явление" посвящен истории развития естествознания с древнейших времен до середины XX в. В заключительный раздел книги включены редко публикуемые публицистические статьи ученого.Книга представит интерес для студентов, преподавателей естественнонаучных дисциплин и всех интересующихся вопросами биологии, экологии, философии и истории науки.© Составление, примечания, указатель, оформление, Айрис-пресс, 2004__________________

Владимир Иванович Вернадский

Геология и география / Экология / Биофизика / Биохимия / Учебная и научная литература
Как нас обманывают органы чувств
Как нас обманывают органы чувств

Можем ли мы безоговорочно доверять нашим чувствам и тому, что мы видим? С тех пор как Homo sapiens появился на земле, естественный отбор отдавал предпочтение искаженному восприятию реальности для поддержания жизни и размножения. Как может быть возможно, что мир, который мы видим, не является объективной реальностью?Мы видим мчащийся автомобиль, но не перебегаем перед ним дорогу; мы видим плесень на хлебе, но не едим его. По мнению автора, все эти впечатления не являются объективной реальностью. Последствия такого восприятия огромны: модельеры шьют более приятные к восприятию силуэты, а в рекламных кампаниях используются определенные цвета, чтобы захватить наше внимание. Только исказив реальность, мы можем легко и безопасно перемещаться по миру.Дональд Дэвид Хоффман – американский когнитивный психолог и автор научно-популярных книг. Он является профессором кафедры когнитивных наук Калифорнийского университета, совмещая работу на кафедрах философии и логики. Его исследования в области восприятия, эволюции и сознания получили премию Троланда Национальной академии наук США.

Дональд Дэвид Хоффман

Медицина / Учебная и научная литература / Образование и наука
Богатырская Русь
Богатырская Русь

Ведомо ли вам, что подлинные русские богатыри ничуть не похожи на те приукрашенные сусальные образы, что предстают в современных «политкорректных» пересказах, – настоящие богатыри рубили поверженных врагов в куски и делали чаши из человеческих черепов, совершали ритуальные самоубийства и хоронили павших по языческому обряду, сражались против полчищ Атиллы и вели род от древнего скифского корня. Это не «христолюбивое воинство», каким пыталась их представить Церковь, а грозные волхвы войны, титаны, оборотни и полубоги, последние герои арийского пантеона, наследники великой языческой эпохи, когда русские люди на равных спорили с богами, держали на богатырских плечах Небо и ни перед кем не преклоняли колен!Эта книга – новый взгляд на богатырское прошлое Руси, сенсационное переосмысление русских былин. Неопровержимое доказательство их языческого происхождения. Разгадка древних кодов и тайных иносказаний.

Лев Рудольфович Прозоров

Публицистика / Учебная и научная литература