Читаем Неизбежность странного мира полностью

И впрямь: фотон с нулевой или бесконечно малой длиной электромагнитных волн, как бы упакованных в нем, обладал бы бесконечно большой энергией-массой. Он являл бы собой физическую бессмыслицу. Физик попросту не мог бы «взять» его для опыта. Да к тому же такой фотонище не смог бы «наколоть» электрон: тот ни в малейшей степени не послужил бы для него препятствием. Выпущенный из фантастического источника, этот мифический фотон оказался бы в буквальном смысле слова всепроникающим: ни от чего не отразившись, ни на чем не рассеявшись, сметая по дороге любые преграды, он прошел бы сквозь вселенную, как сквозь пустыню, и затерялся бы в ее безграничности. Надо ли говорить, почему фантастически выглядел бы источник, испустивший такой фотон? В этом источнике какой-то электрический заряд должен был бы совершать колебания с бесконечной частотой, чтобы в пространство отчаливали электромагнитные волны бесконечно малой длины. Но заряд — «кусочек материи», и мельтешить с бесконечной частотой ему запрещают, кроме всего прочего, законы, открытые теорией относительности. Такое мельтешение равносильно движению с бесконечной скоростью, каковой не существует.

Так, попытка достичь абсолютной точности измерений погружает физика в трясину бессмыслиц.

Но вовсе не бессмыслица стремление ко все большей точности. Спросите физика: «Можете вы узнать положение электрона в момент вашего опыта с ошибкой, не большей, чем стомиллиардная ангстрема?» Он ответит: «В принципе — могу». И назовет длину волны или частоту фотона, какой понадобился бы для этой цели. А пожелай вы еще большей точности, он назовет еще большую частоту (или, что то же самое, еще меньшую длину волны).

Правда, все эти цифры физик будет называть действительно только «в принципе». Или, лучше сказать, только для того, чтобы утешить нас, вопрошающих и жаждущих все большей точности. А втайне, про себя, физик будет знать, что на пути к неограниченной точности в измерении положения электрона неизбежно возникнет одно непреодолимое затруднение, о котором теоретикам стало известно далеко не сразу. Здесь об этом можно лишь вскользь упомянуть.

Дело в " том, то фотон — «кусочек материи» — может в подходящих условиях превращаться в другие «кусочки материи». Он может исчезать, порождая пару новых частиц — электрон и позитрон. Для этого надо прежде всего, чтобы энергии (а значит, и массы) у фотона было достаточно для рождения такой пары новых микрокентавров. Образуется именно пара частиц, обязательно — пара: отрицательно заряженный электрон и положительно заряженный позитрон, чтобы в сумме заряд обеих частиц был равен нулю, ибо и сам фотон имеет нулевой заряд — он нейтрален. А когда энергии-массы у фотона так много, что может родиться много пар, происходит в подходящих условиях множественное рождение электронов и позитронов. Могучий фотон гибнет, а на его месте появляется целое семейство наследников.

«Накалывание» атомного электрона «острием» сверхкоротковолнового, сверхэнергичного фотона как раз и будет сопровождаться таким множественным рождением пар. Физические условия — столкновение с атомом — для этого очень подходят. А массы у взятого для измерения фотона так много, что наследники наверняка не замедлят родиться на свет (тут уж точнее сказать: не «на свет», а «из света»). Когда же рядом с атомным электроном возникнут новые, только что сформировавшиеся, ни один экспериментатор не сможет отличить виновника происшедшего, чья координата измерялась, от расплодившихся его близнецов. Измерение окажется бесполезным. Вот что, кроме всего прочего, станет преградой на пути к увеличению точности.

3

Однако, как бы то ни было, в момент измерения координаты физик побеждает неопределенность в положении электрона. И чем точней допустимое измерение, тем полнее победа. Из двух неопределенностей одну он может, хотя бы мысленно, устранять с неограниченным успехом. Остается посмотреть: нельзя ли при этом с таким же успехом побеждать и другую? Именно — «при этом», в это же время. Иными словами, надо посмотреть, нельзя ли одновременно со сколь угодно точной информацией о положении электрона в атоме получить столь же точную информацию о направлении и быстроте его движения?

Хоть мы уже и твердили на разные лады, что нельзя, надо в этом убедиться на деле.

Когда «острие в 0,1 ангстрема» накалывает атомный электрон, соударение с очень массивным фотоном выбрасывает электрон из атомного пространства. Он удаляется из места встречи куда-то в неизвестность, буквально — в неизвестность, так как вариантов столкновения бесчисленное множество. (Еще больше, чем на старом добром бильярдном столе, потому что фотон и электрон — это не твердые шарики.) В эту неизвестность электрон уводит та скорость, какая становится его достоянием как раз благодаря столкновению с накалывающим фотоном. Значит, надо признать, что в то самое мгновенье, когда координата электрона уточняется, его скорость бесконтрольно меняется скачком.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

История / Научная литература / Энциклопедии / Прочая научная литература / Образование и наука