Читаем Неизбежность странного мира полностью

Понимаете, что происходит, и притом — неизбежно: именно и только по вине уточняющего измерения координаты скорость делается в момент измерения еще менее определенной, чем она была бы, если б в атом не вторгся фотон и не нарушил его нормальной жизни!

И ясно, что, когда физик берет еще более тонкое, еще более разящее «острие» — фотон с длиной волны в 0,0001 ангстрема, электрон в момент накалывания претерпевает в своем движении еще несравненно большую пертурбацию. Скорость его еще разительней меняется скачком.

Такова цена возрастающей точности в измерении положения микрокентавра: это возрастающая неточность в значении его скорости. Когда первая неопределенность убывает, вторая — неотвратимо растет. И с этим ничего нельзя поделать — вот что замечательно!

Так мал и чуток микромир, что даже деликатнейшее измерение равносильно грубому вторжению в нормальное течение его жизни. В этом нет ничего неожиданного: измерение — материальный физический процесс. Измерять можно только «чем-то». Пусть физик коснется внутриатомного мира даже «перстами легкими, как сон», все равно там произойдет от такого прикосновения что-то ощутимо реальное. Эти персты, как бы нежны они ни были, не меньше того, к чему прикасаются: как и сам микромир, физические приборы по необходимости «сконструированы» из атомов, квантов, элементарных частиц. И заметьте, когда физик делал все более точные измерения координаты электрона, он в каждом опыте «выводил из строя» подопытный водородный атом — невольно удалял из него электрон. Он не мог бы проделать всю серию даже мысленных своих экспериментов на одном и том же атоме водорода. Каждый раз схему приходилось бы брать новый экземпляр, еще не тронутый вторжением. Биологи знают, что под электронным микроскопом они никогда не видят живой клетки. Поток освещающих клетку электронных волн ее убивает. Это не хирургия живых клеток, а препарирование клеточных трупов. Оно дает биологам массу важнейших сведений, но только гигантские серии опытов над тысячами клеток позволяют им статистически воссоздать картину жизни в клеточной структуре. Вот так и в микрофизике — измерение искажает объект наблюдения. Вы понимаете, как существенно было отдавать себе в этом полный отчет?

Мы могли бы попросить физика провести серию измерений координаты электрона в обратном порядке: брать все менее острые острия — все более длинноволновые фотоны. Они не так заметно нарушали бы нормальный ход движения атомного электрона. И чем «незаметней», чем «слабее» был бы фотон, тем мягче и бесформенней точка, которую ставил бы он на карте атома. Скорость электрона не так страдала бы от этих прикосновений. Но разве не видно, что уменьшение неопределенности ее измерения покупалось бы от опыта к опыту ценой увеличения неопределенности в знании координат электрона? Измерение с помощью все более расплывчатых «точек» давало бы все менее точную информацию о положении электрона в атоме.

Можно было, бы, наконец, придумать идеальный опыт для измерения именно скорости микрочастицы (или ее импульса — «масса, умноженная на скорость»). Но для этого понадобился бы новый многостраничный и без нужды утомительный рассказ, а итог был бы тем же самым: физики лишь на новый лад еще раз убедили бы нас, что обе неопределенности победить одновременно невозможно никакими уловками совершеннейших измерений.

Значит, между этими неопределенностями и вправду существует тесная связь. Предвиденная в начале предыдущей главки на том, впрочем никем не доказанном, основании, что «природа всегда точна», она, эта связь, теперь проясняется.

4

Она очень проста. Но проста той загадочной простотою, какая отличает обычно наиболее общие и фундаментальные законы природы: математическая формула выглядит скромнее «скромного, а физическая суть заставляет мучиться сомнениями целые поколения исследователей. Она таинственна и глубока. Так глубока, что дно не просматривается.

Знаете ли, что напоминает — внешне эта связь между неопределенностями в местоположении и скорости электрона? Впрочем, сравнений сколько угодно. (Именно из-за простоты этой связи.) Хочется выбрать что-нибудь понаглядней — «поближе к жизни». Ну, вот хотя бы связь между длиной и шириною комнаты с заданной площадью.

Такая комната, которая по нашему капризу превращалась то в идеальный квадрат, то в нелепо узенький коридор, однажды нам уже пригодилась на Арагаце. Но, тогда речь шла о предмете, физически совсем несложном: о том, что такое импульс космической частицы. Импульс может быть каким угодно, и воображаемая комната могла быть сколь угодно малой или большой. А теперь нам — надо вообразить, что мы имеем дело с самой маленькой из возможных комнат — такой, что «меньше не бывает», поскольку на сей раз в ней кто-то должен жить, то есть уж, во всяком случае, поместиться! Оговорив это, примемся за старое: будем варьировать ширину и длину воображаемой комнаты, не считаясь с волей жильца.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
100 великих замков
100 великих замков

Великие крепости и замки всегда будут привлекать всех, кто хочет своими глазами увидеть лучшие творения человечества. Московский Кремль, новгородский Детинец, Лондонский Тауэр, афинский Акрополь, мавританская крепость Альгамбра, Пражский Град, город-крепость Дубровник, Шильонский замок, каирская Цитадель принадлежат прекрасному и вечному. «У камня долгая память», – говорит болгарская пословица. И поэтому снова возвращаются к памятникам прошлого историки и поэты, художники и путешественники.Новая книга из серии «100 великих» рассказывает о наиболее выдающихся замках мира и связанных с ними ярких и драматичных событиях, о людях, что строили их и разрушали, любили и ненавидели, творили и мечтали.

Надежда Алексеевна Ионина

История / Научная литература / Энциклопедии / Прочая научная литература / Образование и наука