…Ньютон. Закон тяготения. Простая формула для взаимного притяжения двух масс. Небесная механика. Точнейшие совпадения с наблюдениями над ходом светил. И — столетние споры: как устроен мир, в котором действуют силы гравитации? Что это за силы? Ведь если бы Земля вращалась вокруг Солнца на стальном тросе толщиной с земной диаметр, этот трос ее не удержал бы, он лопнул бы от перегрузки и Земля улетела бы в мировое пространство, как камень, сорвавшийся с пращи. Это подсчитал один физик, дабы ясно показать, как удивительна мощь тяготения, привязывающая планеты к Солнцу без посредства какого бы то ни было вещества. Так что же, массы плавают в пустоте? Через непостижимое ничто с чудесной мгновенностью действуют тела друг на друга? Математически ньютонов закон тяготения допускал это. Но можно ли было поверить в истинность такой картины природы — в такую
Квантовая механика, пробравшись в глубины атома, привела оттуда толпу новых физических загадок и непонятностей. Действительных и мнимых. Эйнштейн умер в 1955 году, оставив на полях трактатов по квантовой физике нестертые знаки вопросов, не доказав основательности многих одолевавших его сомнений и не опровергнув того, с чем не мог смириться. Помните его письмо де Бройлю о «гадких квантах»? Он написал его всего за два года до смерти.
Как раз в ту пору — в начале 50-х годов, кроме уже стареющего де Бройля, еще и молодые теоретики из разных стран выступили со своими попытками нового физического истолкования математических законов квантовой механики. Ими руководила та же надежда, что и де Бройлем, — надежда обрести в микромире утраченные траектории. И как некогда в 20-х годах, в эпоху рождения новой механики, академические аудитории и страницы научных изданий вновь стали в наши дни ареной споров «на старые темы».
Вообще-то говоря, эти споры никогда надолго не затихали на протяжении последних тридцати лет. Спорили физики и математики, философы и публицисты, люди дела и люди слова. Новизна открывшейся картины движения в Малой вселенной атома взбудоражила все умы. Но в этой непрерывной борьбе вокруг механики микромира, пожалуй, всего замечательней был именно духовный союз Эйнштейна и де Бройля, потому что никто из физиков не сделал больше, чем они, для самого зарождения новой механики с ее миром утраченных траекторий. Они дали ей первые идеи.
Так была ли неизбежность в появлении этого странного мира? Что лежало в начале начал?
Эйнштейн теоретически открыл, что у световых волн есть свойства частиц. Это произошло в 1905 году.
Де Бройль теоретически предсказал, что у частиц вещества есть свойства волн. Это произошло в 1923 году.
Косвенные, отдаленные, очень смутные и отнюдь не экспериментальные данные намекали учёным, что природа, быть может, снабдила материю во всех ее проявлениях симметрией этих противоположных свойств — волн и корпускул. В убеждении, что такая симметрия или равноправие существуют не «быть может», а
«Для того чтобы рискнуть сделать этот вывод, требовалось так много мужества… что, по-видимому, только два физика — сам Эйнштейн и Луи де Бройль — решились на это». Так говорил известный теоретик Паскуаль Иордан — один из тех истолкователей микромеханики, которых де Бройль относит сейчас к разряду «авторов трактатов», забывающих своих идейных родителей. Тут, кстати, видно, что этот упрек не очень справедлив: столь смиренно и восхищенно не говорят о заслугах отцов неблагодарные дети.
«Эйнштейн долго вынашивал эту идею, не опубликовывая ее, — читаем мы дальше, — так как он не получил никаких результатов, которые дали бы возможность формулировать ее количественно». Де Бройль такие результаты получил. Он и вправду решился на шаг, редкий по мужеству даже в отчаянно-смелом естествознании нашего века.
…Обычно физические идеи возникают так: ученого загоняют в тупик необъяснимые факты — он предполагал, что кривая будет ползти вверх, а она опускается вниз; он не ожидал, что спектральная линия вдруг окажется почему-то раздвоенной; он заметил, что стрелки приборов систематически скачут без всяких видимых причин. Как понять непонятное? Может быть, выдвинуть предположение, что тут замешаны новые силы, или неизвестные частицы, или какие-то «дикие» законы природы? Но, наверное, эта догадка покажется коллегам нелепостью. А все же попробуем — посмотрим, не помогает ли она делу?.. Возникает рабочая гипотеза.
Ведь именно так, подчеркнуто-скромно, называл поначалу свою великую идею неделимых порций энергий Макс Планк. Он чувствовал робость перед ее революционностью — кванты посягали на слишком многое, а появились только для уяснения одной-единственной проблемы. Эта робость ученого перед необъятно широкими последствиями его собственной рабочей гипотезы — свидетельство совершенно конкретного «лабораторного» происхождения квантовой теории, доставившей впоследствии столько забот физикам и философам нашего времени.