Так всегда — необъяснимость или, вернее, необъясненность фактов дает толчок ищущей мысли физика. И опытное происхождение глубочайших идей не умаляет их величия. Но когда они рождаются в поисках выхода из лабораторного тупика, ищущая мысль в своем вольном полете все время испытывает спасительную поддержку в заранее установленных надежных фактах. Они не позволяют ей заблудиться. Маршрут полета неведом, трасса никем не проложена, но конечный пункт известен — он отмечен в дневниках экспериментаторов. И пустившийся в полет теоретик знает, где его ждут давно и нетерпеливо.
Так, Эйнштейн, заговорив в 1905 году о частицах света, имел ужен, сущности, совершенно надежное экспериментальное доказательство своей правоты: световые волны не всегда (вели себя как волны — они выбивали электроны с поверхности вещества на манер падающих градинок, а не порывов ветерка. Конечно, это надо было увидеть, понять, провозгласить! Но Эйнштейн проложил небывалый путь к уже обитаемому острову.
А бывает не так.
Вряд ли Менделеева ждали с цветами, когда он пустился на поиски периодического закона: незадолго до его блестящего успеха попытки англичанина Ньюлендса найти такой же закон были встречены издевательским вопросом со стороны почтенных британских химиков: «А вы не пробовали располагать элементы просто в алфавитном порядке?» Относительный вес многих атомов (во сколько раз они тяжелее водорода) был еще неточно измерен, чуть не треть элементов вообще не была еще открыта. Менделеев сам на бумаге исправлял атомные веса, как считал это нужным, ибо не верил экспериментальным данным: они противоречили его руководящей идее. Он оставлял пустые клетки в своей таблице, надеясь на будущие открытия. Лишь завтрашний день науки мог действительно подтвердить его правоту. И — подтвердил, по-новому обосновав и уточнив, но не отвергнув менделеевский принцип построения таблицы химических элементов.
Так, лишь на будущие успехи экспериментаторов мог рассчитывать Луи де Бройль, когда в 1923 году он заговорил о «волнах материи»: еще ни в одной лаборатории, никем и никогда не наблюдались
На какой же почве возникли его идеи? Ведь в настоящей науке беспочвенных идей не бывает. Даже научные фантасты — вольные стрелки — не часто позволяют себе подобные вещи: они привязаны если не к выводам, то к надеждам науки. И когда их воображение отрывается от этой почвы, они, конечно, остаются фантастами, но перестают быть научными. У физиков и такого выбора нет!
Перед мысленным взором де Бройля маячили разрешенные орбиты электронов в атомном пространстве. Расчисленные в 1913 году Нильсом Бором, эти орбиты спасли планетарную модель Резерфорда. Но физики уже десять лет задавали себе вопрос — почему одни орбиты разрешены природой, а другие нет? Почему они образуют прерывистую последовательность, как ряды в круговом амфитеатре цирка или нити в паутине? Что вынуждает электроны к скачкам с одной устойчивой орбиты на другую? Почему в атоме создается лестница дозволенных уровней энергии — почему лестница, а не пандус?
Как ни удивительно, но именно в этой-то прерывистости атомных состояний де Бройль почувствовал намек на волновые свойства вещества. Это удивительно потому, что ведь во всякой волне что-то меняется непрерывно. А в атоме как раз наоборот — господствует прерывистость. Так где же здесь можно было заподозрить вмешательство каких-то волновых процессов?
Однако вот мы сидим на морском берегу и от нечего делать считаем набегающие волны — одна, другая, третья… Мы их считаем, но нам и в голову не приходит, что своим прерывистым счетом мы внешне описываем непрерывный процесс. А прислушайтесь к тиканью часов. Это ведь непрерывные колебания невидимого маятника пунктиром отмеривают для нас время. У волн и колебаний — одна и та же существеннейшая черта: периодическая повторяемость, внешняя дробность.
Но подождите, к квантовым скачкам такая дробность еще не имеет никакого отношения — ни малейшего! Это мы, наблюдатели, перескакиваем взглядом с гребня на гребень или слухом — с «тика» на «так», а. в самом-то волнообразном движении морской воды и в самих-то качаниях маятника непрерывность не нарушается нигде. Ну, а боровские перескоки электронов в атомах — это настоящие прыжки с испусканием неделимого кванта энергии излучения. Половины или восьмушки кванта атом ни излучить, ни поглотить не может: об этом говорят прерывистые атомные спектры и другие многочисленные свидетельские показания опыта. Между двумя квантовыми уровнями энергии в атоме никаких промежуточных, разрешенных природою уровней нет. Электрон действительно скачет через пропасть невозможного. Это совсем не похоже на перекатывание по волне с гребня на гребень.
И все же между этими столь несхожими картинами де Бройль увидел глубокую связь. Глубокую и очень простую.