Фагу надобно попасть внутрь бактерий — только в клетке он, как все вирусы, может размножиться. Как это ему удается? Ведь бактериальная клетка защищена двухслойной оболочкой, которую не так-то легко пробить. И вот тут оказывается, что фаг даже и не проникает в клетку! То есть проникает, но не весь…
Хвост служит фагу для атаки. Вероятно, на кончике его есть фермент, который разрыхляет, делает более проницаемой оболочку клетки в том месте, где фаг присасывается к ней своей площадочкой. Фермент, возможно, своего рода ключ, при помощи которого фаг получает доступ внутрь клетки. Как только фаг прилепился к стенке клетки, гармошка-чехол сокращается, хвост, словно шпага, пробивает оболочку бактерии, и внутрь клетки изливается, впрыскивается содержимое головки фага — нуклеиновая кислота. Всё! Белковый чехол остается снаружи, отваливается от оболочки. Не нужен больше.
Фаг на мгновение превратился в некое подобие шприца, которым делают инъекции! Так ли? А если так, то каким образом удалось это узнать? Фаг ведь невидим в обычный микроскоп, а следить за его действиями в электронный микроскоп тоже невозможно — поток электронов мгновенно все убивает. Снимки, сделанные в лучах электронного микроскопа, показывают лишь трупы фагов, застигнутых в какой-то миг их атаки.
Американские ученые Херши и Чейз воспользовались радиоактивными элементами (изотопами), которые можно обнаружить при помощи особого счетчика, улавливающего радиоактивные излучения.
Чтобы узнать, весь ли фаг или часть его проникает в клетку, они пометили ДНК фага и его белковый чехол двумя разными радиоактивными метками: серой и фосфором. Ученым пришлось для этого вырастить колонию бактерий на питательном бульоне, содержащем радиоактивные молекулы серы и фосфора. Затем бактерии были заражены фагом. Частицы фага, размножаясь в клетках, естественно, поглощали и включали в свой состав и радиоактивные изотопы. Затем, после распада — зараженных им клеток, фаг выделили и очистили. Теперь можно было проследить за его работой в целом и за судьбой каждой из двух составных его частей — нуклеиновой и белковой: известно, что фосфор входит в состав нуклеиновой молекулы, а сера — в состав белковой.
Когда мечеными фагами заразили потом бактерии, выращенные в обычной среде, не содержащей изотопов, то оказалось: почти весь меченый фосфор вошел в бактериальные клетки, а почти вся меченая сера осталась снаружи. Так выяснилось, что в клетку попадает почти исключительно нуклеиновая кислота фага, примеси белка в ней всего около трех процентов.
Опыты с изотопами фосфора и серы описаны здесь далеко не во всех подробностях. Но и то видно, какое терпение и какая дотошность нужны современному исследователю, чтобы выспросить у природы хоть самую малость..
Мы расстались с нашим фагом в тот момент, когда он, впрыснув внутрь клетки свою ДНК, в сущности распался, разделился надвое. Нас интересует сейчас не пустышка, оставшаяся снаружи, а та часть, которая попала в клетку, ибо она несет все задатки фага, его особенности — всю наследственную информацию. Обычно одного микроба атакуют десятки фагов и все впрыскивают в него свою ДНК. Но для той драмы, которая потом разыгрывается внутри клетки, достаточно и одного фага, одной лишь порции ДНК, имеющей вид крохотной тонюсенькой нити.
Попав в клетку, фаговая ДНК становится там полновластной хозяйкой. Под ее давлением весь сложнейший биохимический аппарат клетки перестраивается, переналаживается. Отныне он служит одной лишь цели — размножению фага. Клетка перестает делиться, она больше не производит нужные ей ферменты и нуклеиновые кислоты. Ее плоть служит материалом для сборки фаговых частиц. Нить фаговой ДНК делится, расщепляется надвое, каждая из двух новых нитей — вновь надвое…
Каждая новая нить тут же одевается белковым чехлом, приобретая такой же вид, какой имел изначальный фаг, прилепившийся к оболочке бактерии и впрыснувший в нее свою ДНК. И вот уже внутри клетки выстроились около трехсот готовеньких, одетых фагов. Один биолог назвал их «пышками». Бактерия увеличивается в размерах, набухает и лопается. «Пышки», вырвавшись на свободу, устремляются в атаку на другие бактерии.
Поистине фантастическая картина! И вся эта драма — от инъекции фаговой ДНК до гибели клетки — разыгрывалась всего лишь 30 минут.
Каким же образом крошечная нить фаговой ДНК, попав внутрь клетки, оказывается сильнее сложнейшего, отлично налаженного наследственного аппарата клетки? Какие силы вынуждают бактерию работать по указке вторгшегося паразита?
Алла Робертовна Швандерова , Анатолий Борисович Венгеров , Валерий Кулиевич Цечоев , Михаил Борисович Смоленский , Сергей Сергеевич Алексеев
Детская образовательная литература / Государство и право / Юриспруденция / Учебники и пособия / Прочая научная литература / Образование и наука