Читаем Необычные размышления о… полностью

Тогда, мы должны думать, что фотон – это баба Яга (электрическое поле), перекувырнувшись, превращается в Лешего (магнитное поле), а он, перекувырнувшись, превращается в бабу Ягу, которая превращается в Лешего. Вот так они и перемещаются в пространстве со скоростью света.

13.5. Наше представление о фотоне и свободном электроне

Мы считали и считаем, что фотон – это объемная конструкция. Но, не нечто, сконструированное из двух плоских, взаимно перпендикулярных синусоид. Для того, чтобы убежденно утверждать, что внутри такой объемной конструкции (фотона) расположились две взаимно перпендикулярные синусоиды, нужно, как минимум, заглянуть внутрь фотона, и посмотреть, как они там расположились. Причем, фотон – это вращающаяся в пространстве штучка. То есть, располагающая собственным спином. Фотон относится к бозонам, то есть, имеет спин, равный единице. Это означает, что вращающийся фотон, совершает один оборот за один период его колебательного движения. Читатель может подумать. С синусоидами Максвелла было все понятно. Там речь шла о периоде плоских синусоид (электрической и магнитной) электромагнитного поля.

А что представляет собой период колебаний такой объемной конфигурации, как фотон. В нашем представлении, фотон – это нечто пульсирующее. Что-то типа сердца, которое сжимается и разжимается (пульсирует) в пространстве. Период таких пульсаций и есть период колебаний фотона. Нам очень нравится идея Максвелла о перекувыркивании фотона. Но, в нашем представлении, фотон перекувыркивается в самого себя.

Более подробно о механизме такого перекувыркивания. Все начинается с того, что с электрона срывается малюсенькая капелька чего-то, что является содержимым фотона. Что это такое – не знаем. Но зато мы знаем, что такая малюсенькая капелька, состоящая из чего-то, вращается в пространстве. Поскольку электрон все время вращается в пространстве. В соответствии с законом сохранения момента, наша малюсенькая капелька, сорвавшись с электрона, как и электрон, пребывает во вращательном движении.

Многим из нас доводилось наблюдать за воронками, которые образуются в жидкостях. Что-то подобное происходит с нашей малюсенькой капелькой, внутри которой, по причине ее вращения, начинает формироваться воронка. Правильно сказать, наша капелька приобретает форму воронки.

В результате, содержимое нашей капельки выдавливается на ее периферию и через узкую часть воронки выплескивается в соседнее пространство. Можно сказать, что капелька (фотон) перекувыркивается сама в себя в пространстве. Чтобы внутри содержимого капельки (фотона) произошло образование пустой воронки, необходима начальная сила и вращение капельки. Такие условия обеспечивает электрон. Надо думать, что наша капелька вырывается из объятий электрона, под воздействием какой-то силы (первоначальный толчок). О вращении электрона мы уже сказали. Мы знаем, что электрон является фермионом, со спином, равным одной второй. То есть, в пространстве электрон совершает два оборота за один период его пульсаций. Нетрудно понять, почему фермион (электрон) порождает бозон (фотон). Это следует из наших объяснений механизма перекувыркивания капельки (фотона).

Как только капелька (фотон) вырвалась из объятий электрона, она начинает жить своей жизнью и совершать вращения и пульсации (перекувыркивания) с частотой в один оборот за один период пульсаций. Иначе, мы не получим рассмотренный нами механизм перекувыркивания капельки (фотона).

13.6. Почему радиоволны проходят сквозь стену, а свет не проходит

Хотелось бы понять, чем и как отличаются фотоны, принадлежащие к различным диапазонам излучений. Например, чем отличается фотон светового излучения в видимом диапазоне от фотона в радиочастотном диапазоне. Представим себе типичную бытовую ситуацию. Некто Иванов, в кирпичном доме заходит в ванную комнату, стены которой построены из бетона. Некто Петров, в таком же доме и в такой же ванной комнате, но на соседней улице, достает смартфон, звонит Иванову, и Петров с Ивановым начинают разговор, с помощью смартфонов. На улице светит солнышко, но свет в ванных комнатах Иванов с Петровым не включают, то есть разговаривают в кромешной тьме. Все понимают, что смартфоны обмениваются фотонами в радиочастотном диапазоне.

Вопрос. Почему фотоны радиочастотного диапазона проникают в ванные комнаты Иванова и Петрова, сквозь кирпичные стены домов и бетонные стенки ванных комнат, а солнечные фотоны не проникают? Чтобы ответить на такой вопрос, вернемся к рассмотрению наших капелек (фотонов). В случае с фотоном в видимом диапазоне частот, перекувыркивание и пульсации капелек (фотонов) происходят очень часто. Содержимое капельки не успевает расползтись в направлении ее движения. Поэтому фотон в направлении его движения можно и нужно представить этаким толстеньким коротышкой. Что-то типа сковороды, летящей вперед днищем (плашмя). Толщина такой сковороды (фотона) – ангстремы.

Перейти на страницу:

Похожие книги

Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется
Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется

Если бы можно было рассмотреть окружающий мир при огромном увеличении, то мы бы увидели, что он состоит из множества молекул, которые постоянно чем-то заняты. А еще узнали бы, как действует на наш организм выпитая утром чашечка кофе («привет, кофеин»), более тщательно бы выбирали зубную пасту («так все-таки с фтором или без?») и наконец-то поняли, почему шоколадный фондан получается таким вкусным («так вот в чем секрет!»). Химия присутствует повсюду, она часть повседневной жизни каждого, так почему бы не познакомиться с этой наукой чуточку ближе? Автор книги, по совместительству ученый-химик и автор уникального YouTube-канала The Secret Life of Scientists, предлагает вам взглянуть на обычные и привычные вещи с научной точки зрения и даже попробовать себя в роли экспериментатора!В формате PDF A4 сохранен издательский макет.

Нгуэн-Ким Май Тхи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Физика в быту
Физика в быту

У многих физика ассоциируется с малопонятным школьным предметом, который не имеет отношения к жизни. Но, прочитав эту книгу, вы поймете, как знание физических законов помогает находить ответы на самые разнообразные вопросы, например: что опаснее для здоровья – курение, городские шумы или электромагнитное загрязнение? Почему длительные поездки на самолетах и поездах утомляют? Как связаны музыка и гениальность? Почему работа за компьютером может портить зрение и как этого избежать? Что представляет опасность для космонавтов при межпланетных путешествиях? Как можно увидеть звук? Почему малые дозы радиации полезны, а большие губительны? Как связаны мобильный телефон и плохая память? Почему правильно подобранное освещение – залог хорошей работы и спокойного сна? Когда и почему появились радиоактивные дожди?

Алла Борисовна Казанцева , Вера Александровна Максимова

Научная литература / Детская познавательная и развивающая литература / Научно-популярная литература / Книги Для Детей / Образование и наука
100 великих тайн из жизни растений
100 великих тайн из жизни растений

Ученые считают, что растения наделены чувствами, интеллектом, обладают памятью, чувством времени, могут различать цвета и общаться между собой или предостерегать друг друга. Они умеют распознавать угрозу, дрожат от страха, могут звать на помощь; способны взаимодействовать друг с другом и другими живыми существами на расстоянии; различают настроение и намерения людей; излучение, испускаемое ими, может быть зафиксировано датчиками. Они не могут убежать в случае опасности. Им приходится быть внимательнее и следить за тем, что происходит вокруг них. Растения, как оказывается, реагируют на людей, на шум и другие явления, а вот каким образом — это остается загадкой. Никому еще не удалось приблизиться к ее разгадке.Об этом и многом другом рассказывает очередная книга серии.

Николай Николаевич Непомнящий

Ботаника / Научно-популярная литература / Образование и наука