Читаем Необычные размышления о… полностью

В случае с фотоном в радиочастотном диапазоне, наша капелька (фотон) расползается по всей длине фотона. А длина такого фотона может составлять сантиметры, метры. Поэтому содержимое нашей капельки, растекаясь по всей длине фотона в радиочастотном диапазоне, превращается в нечто очень тонкое. Мы считаем, что это очень тонкое, можно назвать вибрирующей (пульсирующей) струной. В отличие от апологетов теории струн, хотя мы тоже относимся к сторонникам такой теории, мы рассматриваем явления уже на уровне фотонов, и нам, для такого рассмотрения, достаточно трехмерного пространства.

Апологеты теории струн претендуют на многомерное пространство где-то на уровне кварков. Во всяком случае, наша интерпретация позволяет объяснить, почему струна (фотон в радиочастотном диапазоне) свободно проходит в межатомном пространстве кирпичной стены здания и бетонной стены ванной комнаты, а сковорода (фотон в световом диапазоне) застревает в таких стенах.

Наша интерпретация позволяет наглядно объяснить гениальный закон Макса Планка, согласно которому энергия прямо пропорциональна частоте фотона. Чем выше частота пульсаций фотона, тем короче сковорода, но тем больше площадь днища такой сковороды. Физики предпочитают употреблять термин “площадь эффективного сечения”. Чем ниже частота пульсаций фотона (например, в радиочастотном диапазоне), тем длиннее и тоньше струна (пульсирующий фотон). Энергия “чего-то” характеризуют способность этого “чего-то” совершать работу.

В каком случае совершится большая работа, например, когда по левой щеке нам стукнет летящая сковорода или в левую щеку вопьется, летящая со скоростью летящей сковороды, очень тонкая струна. Нам кажется, что сковорода не только вышибет челюсть, но и всю голову разнесет вдребезги, а тонкая струна пронзит и левую и правую щеки практически без последствий. Так что мы имеем право сказать, что сковорода (фотон в рентгеновском диапазоне) совершает большую работу, чем тонкая струна (фотон в радиочастотном диапазоне). Фотон в рентгеновском диапазоне еще более энергичен фотона в радиочастотном диапазоне. Что подтверждается формулой Макса Планка.

Читатель может спросить. Почему сковорода в рентгеновском диапазоне проникает внутрь определенного вещества, а сковорода из светового диапазона не проникает во внутрь такого вещества. Если структура такого вещества имеет слабые внутренние связи, то рентгеновская сковорода настолько энергична, что может порвать такие связи и проникнуть внутрь вещества. Для защиты таких слабых связей от разрывов, применяют экраны, например, свинцовые. Защищаться от сковороды в световом диапазоне нет необходимости, поскольку такие сковородки не могут порвать связи вещества, протаранить вещество и проникнуть внутрь вещества.

13.7. Почему скорости фотонов в световом и рентгеновских диапазонах равны

Скорость математически выражена дробью, в числителе которой длина пути, для некоторого нечто, пробегающего такой путь, а в знаменателе – время, в течение которого это нечто пробегает такой путь. Применительно к такому нечто, как фотон, в любом диапазоне частот, его скорость – величина постоянная. Такой факт можно объяснить, если удастся определить или измерить толщину сковородки (или длину струны), а также определить время, в течение которого сковородка (или струна) перекувыркивается в свое новое состояние.

Если толщина сковородки небольшая, то и время перекувыркивания малое. Деля толщину такой сковородки на время такого перекувыркивания, получим скорость перемещения сковородки в пространстве. Если длина струны большая, то и время перекувыркивания такой струны в новое положение достаточно большое. Если поделить длину струны на время ее перекувыркивания, то мы получим скорость ее перемещения в пространстве.

Что-то нам подсказывает, что скорости перемещения сковородки и струны, в наших рассуждениях по предложенному нами алгоритму, будут одинаковыми и равными скорости света. Правда, такого рода догадки, нуждаются в экспериментальных подтверждениях. В сущности, время перекувыркивания фотона, можно определить по частоте его пульсаций, а толщину сковородки или длину струны можно рассчитать, если время перекувыркивания помножить на скорость света. В этом случае, мы уповаем на уже известное значение скорости света. Однако, для доказательства того, что скорость фотона равна отношению толщины сковородки (или длины струны) – в числителе, ко времени перекувыркивания – в знаменателе, надо в числитель и в знаменатель подставлять нечто измеренное. Или нечто определяемое, но не вызывающее никаких сомнений, связанное с толщиной сковородки (длиной струны) и временем перекувыркивания.

Перейти на страницу:

Похожие книги

Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется
Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется

Если бы можно было рассмотреть окружающий мир при огромном увеличении, то мы бы увидели, что он состоит из множества молекул, которые постоянно чем-то заняты. А еще узнали бы, как действует на наш организм выпитая утром чашечка кофе («привет, кофеин»), более тщательно бы выбирали зубную пасту («так все-таки с фтором или без?») и наконец-то поняли, почему шоколадный фондан получается таким вкусным («так вот в чем секрет!»). Химия присутствует повсюду, она часть повседневной жизни каждого, так почему бы не познакомиться с этой наукой чуточку ближе? Автор книги, по совместительству ученый-химик и автор уникального YouTube-канала The Secret Life of Scientists, предлагает вам взглянуть на обычные и привычные вещи с научной точки зрения и даже попробовать себя в роли экспериментатора!В формате PDF A4 сохранен издательский макет.

Нгуэн-Ким Май Тхи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Доказательная медицина. Что, когда и зачем принимать
Доказательная медицина. Что, когда и зачем принимать

Доказательная медицина – термин широко известный, даже очень. А все широко известное, уйдя в народ, наполняется новым, подчас неожиданным, смыслом. Одни уверены, что доказательная медицина – это юридический термин. Другие считают доказательной всю официальную медицину в целом, что не совсем верно. Третьи знают из надежных источников, что никакой доказательной медицины на деле не существует, это выдумка фармацевтических корпораций, помогающая им продвигать свою продукцию. Вариантов много… На самом деле доказательная медицина – это не отрасль и не выдумка, а подход или, если хотите, принцип. Согласно этому принципу, все, что используется в профилактических, лечебных и диагностических целях, должно быть эффективным и безопасным, причем оба этих качества нужно подтвердить при помощи достоверных доказательств. Доказательная медицина – это медицина, основанная на доказательствах. Эта книга поможет разобраться как с понятием доказательной медицины, так и с тем, какие методы исследования помогают доказать эффективность препарата или способа лечения. Ведь и в традиционной, официальной, полностью научной медицине есть куча проблем с подтверждением эффективности и безопасности. Правильное клиническое исследование должно быть прозрачным и полностью объективным. На этих двух столпах стоит доказательная медицина. А эти столпы опираются на фундамент под названием «эксперимент».

Кирилл Галанкин

Научная литература / Научно-популярная литература / Образование и наука
Физика в быту
Физика в быту

У многих физика ассоциируется с малопонятным школьным предметом, который не имеет отношения к жизни. Но, прочитав эту книгу, вы поймете, как знание физических законов помогает находить ответы на самые разнообразные вопросы, например: что опаснее для здоровья – курение, городские шумы или электромагнитное загрязнение? Почему длительные поездки на самолетах и поездах утомляют? Как связаны музыка и гениальность? Почему работа за компьютером может портить зрение и как этого избежать? Что представляет опасность для космонавтов при межпланетных путешествиях? Как можно увидеть звук? Почему малые дозы радиации полезны, а большие губительны? Как связаны мобильный телефон и плохая память? Почему правильно подобранное освещение – залог хорошей работы и спокойного сна? Когда и почему появились радиоактивные дожди?

Алла Борисовна Казанцева , Вера Александровна Максимова

Научная литература / Детская познавательная и развивающая литература / Научно-популярная литература / Книги Для Детей / Образование и наука
100 великих тайн из жизни растений
100 великих тайн из жизни растений

Ученые считают, что растения наделены чувствами, интеллектом, обладают памятью, чувством времени, могут различать цвета и общаться между собой или предостерегать друг друга. Они умеют распознавать угрозу, дрожат от страха, могут звать на помощь; способны взаимодействовать друг с другом и другими живыми существами на расстоянии; различают настроение и намерения людей; излучение, испускаемое ими, может быть зафиксировано датчиками. Они не могут убежать в случае опасности. Им приходится быть внимательнее и следить за тем, что происходит вокруг них. Растения, как оказывается, реагируют на людей, на шум и другие явления, а вот каким образом — это остается загадкой. Никому еще не удалось приблизиться к ее разгадке.Об этом и многом другом рассказывает очередная книга серии.

Николай Николаевич Непомнящий

Ботаника / Научно-популярная литература / Образование и наука