по наследству не передается. Аналогично результат любых других внешних воз¬действий. (Прямое отрицание Ламарка). Но если в резуль¬тате мутации родится мышь, лучше приспособленная к жиз¬ненной борьбе, то она выживет и наплодит потомства и передаст ему новый признак. Берг полагал, что ни внешние воздействия, ни борьба за существование к эволюции не имеет практически отношения и что она происходит на основе некой внутренней программы. Казалось бы, сплошные непреодолимые противоречия моделей, описывающих одну и ту же область действительности, один и тот же процесс с одним и тем же главным вопросом. Однако, сегодняшние эволюционные теории успешно синтезируют все три непримеримые модели. Например, стало ясно, что высокоорганизованный организм в силу уже сложившейся структуры его (и вероятно в силу способа кодирования наследственной информации) не до¬пускает произвольных случайных мутационных изменений и этим диктуется определенная запрограммированность его эволюции, по крайней мере, эволюции определенных признаков, которая, однако, не определяет процесс настоль жестко и однозначно, чтобы не оставалось еще места и для дарвинского естественного отбора. Таким образом, выясняется, что каждая из рассмотренных моделей была не пуста (включая ламарковскую), т.е. описывала верно (в модельном смысле) какую-то часть рассматриваемой действительности, но лишь часть.
Теперь попробуем ответить на вопрос, заданный еще во введении: почему же в процессе познания возникают «парадоксы» типа Ньютон—Эйнштейн? Поскольку базисным элементом познания является, как было сказано, понятие, то, очевидно, нужно рассмотреть взаимоотношение сходных, одноименных понятий таких моделей. Я предлагаю следующую графическую иллюстрацию «разрезания» действительности одноименными понятиями моделей типа Ньютон—Эйнштейн (см. рис. 3).
Рис. 3
На рисунке клетки, образованные прямыми линиями, изображают множества объектов действительности, соответст¬вующих понятиям одной, а клетки, образованные дугами окружностей — другой модели. Мы видим, что, если радиус окружностей достаточно велик, то вблизи центра рассмат¬риваемой области клетки одной сети будут практически совпадать с клетками другой. Эти почти совпадающие клетки как раз и изображают близкие, (одноименные) понятия двух моделей. Их номинал-определения качественно разнят¬ся между собой, как разнятся уравнение окружности от уравнения прямой, но множества объектов, охватываемых этими близкими понятиями разных моделей, практически совпадают. Поэтому и выводы из обеих моделей в этой зоне количественно совпадают, как это имеет место для моделей Ньютона и Эйнштейна в зоне, близкой к земному шару и для скоростей далеких от скорости света. Однако, по мере удаления от центра области, множества, накрываемые близкими понятиями обеих моделей, начинают расходиться (нарастает несовпадение клеток) и поэтому начинают расходиться и количественные результаты, вычисленные на основе каждой из моделей. Естественно, что при этом лишь одна из моделей продолжает давать результаты, количественно близкие к фактам, т.е. истинные в модельном смысле. Вторая же мо¬дель выходит за пределы зоны ее
применимости.
Из предложенной иллюстрации следует также, что и та модель, которая остается верной в большей области, может оказаться неверной в еще большей. Например, помимо прямых линий и дуг окружностей, мы могли бы нанести на ри¬сунок еще дуги, скажем, парабол, так, чтобы клетки, обра¬зованные этими последними практически совпадали и с клет¬ками сети прямых линий и с клетками дуг окружностей в той зоне, где те совпадают между собой, но с клетками дуг окружностей параболические клетки могли бы практически совпадать и за пределами этой зоны, хотя опять же не до бесконечности. Эти параболические клетки изображают рас¬сечение действительности понятиями третьей модели, которая приходит на смену и первой, и второй, после того, как и вторая выйдет за пределы своей применимости, т. е. достигнет области, где ее выводы будут неверны.