На протяжении большей части этого времени Ньютон остается в тени. В эти годы Кембридж перестает быть интеллектуальным центром, и Ньютон оказывается изолированным от интеллектуальной жизни Лондона. Его репутация ученого начала возрождаться лишь после публикации «Начал» (1687 г.). Вскоре после этого Ньютон становится горячим защитником революции 1688 года. Он агитирует против католической реставрации и представляет Кембриджский университет в парламенте. В 1690 году, получив пост главы Монетного двора, Ньютон покидает Кембридж. В течение следующего десятилетия популярность Ньютона как первого интеллектуала Англии росла, и в 1703 году он стал пожизненным президентом Королевского общества.
В середине 1690-х годов националистически настроенные последователи Ньютона решили восстановить его первенство в создании математического анализа и начали кампанию против Лейбница. Под давлением этих людей Ньютон наконец публикует старую работу о методе флюксий в приложении к книге «Оптика»: в 1704 году и затем в 1711 году.
Лейбниц отвечает на нападки анонимной рецензией на ньютоновскую «Оптику», опубликовав ее в журнале
Представьте себе: Лейбниц и Ньютон – два ученых мужа первой величины – обвиняли друг друга в плагиате, искажали факты и анонимно публиковали якобы беспристрастные статьи в свою защиту! Их сторонники вели себя еще хуже.
Лейбниц не упускал ни одной возможности – ни организационной, ни политической, ни интеллектуальной – для утверждения своего приоритета. Однако нет никаких свидетельств того, что он занимался плагиатом, хотя, конечно, он старался как можно больше узнать о том, над чем работают ведущие интеллектуалы, и использовал плоды их работы в своих интересах. Ньютон же нисколько не заботился о том, чтобы сделать свой метод общедоступным. Избранная им символика служила лишь для его «внутреннего», личного потребления, и он ее строго не придерживался. При этом он считал, что открытие принадлежит ему навечно и достаточно того, что оно просто покоится в его голове. Ученый искренне полагал, что своевременная публикация не приносит никаких прав. Перед богом первооткрывателем всегда останется тот, кто открыл первым. Правда, Ньютон отчасти закрепил свои права письмом к Коллинзу в 1672 году, не указав самого метода, но приведя несколько примеров. Это письмо служило впоследствии опорным пунктом в споре Ньютона с Лейбницем.
Вернемся немного назад. В начале 1673 года Лейбниц в течение нескольких месяцев был в Лондоне и часто посещал секретаря Королевского общества Ольденбурга, который до известной степени был в курсе математических работ Ньютона. Из Лондона Лейбниц направился в Париж, где вместе с Гюйгенсом усиленно занялся математикой. В 1674 году Ольденбург сообщил Лейбницу о существовании нового общего метода Ньютона, сущность метода при этом, однако, не излагалась. В 1676 году Лейбниц снова был в Англии проездом и лично познакомился с Коллинзом. Впоследствии, в разгар спора, защитники прав Ньютона указывали, что Лейбниц мог узнать содержание работ Ньютона из рукописей, хранившихся у Коллинза в Королевском обществе.
Впрочем, шифровка Ньютона в письме к Лейбницу и, наоборот, открытое, ясное изложение метода Лейбницем в его ответе ставятся некоторыми историками в упрек Ньютону. Но этот упрек едва ли справедлив: обычай скрывать еще не вполне обработанные результаты научной работы в виде анаграмм или шифров был широко распространен. Надо отметить также, что Ньютон еще в первом издании «Начал» отозвался о работах Лейбница совершенно объективно. В знаменитом «Поучении» во второй книге «Начал» он по поводу метода флюксий пишет: «В письмах, которыми около десяти лет тому назад я обменивался с весьма искусным математиком Г. Лейбницем, я ему сообщал, что обладаю методом для определения максимумов и минимумов, проведения касательных и решения тому подобных вопросов, одинаково приложимых как для членов рациональных, так и для иррациональных, причем я метод скрыл, переставив буквы следующего предложения: “когда задано уравнение, содержащее любое число текущих количеств, найти флюксии и обратно”. Знаменитейший муж отвечал мне, что он также напал на такой метод, и сообщил мне свой метод, который оказался едва отличающимся от моего, и то только терминами и начертанием формул».