С другой стороны, было бы ошибкой недооценивать опасности загрязнения окружающей среды. Наш организм очень сложен и, значит, очень чувствителен. Определенные вещества уже в минимальных количествах могут нарушить равновесие жизненных и метаболических процессов, вызвать болезни и преждевременную смерть. Мы, например, плохо переносим такие металлы, как свинец, кадмий, ртуть. Чистая ртуть как жидкий металл практически совершенно безобидна, с ней можно играть, можно делать что угодно. Одна медсестра хотела покончить с собой и ввела себе 10 миллилитров ртути, с ней ничего не случилось, жидкий металл удалось снова вывести из системы кровообращения. Опасны пары ртути. Первым обратил внимание на опасность испарений ее немецкий химик Альфред Шток — он получил в лаборатории ртутное отравление, он же разработал исключительно точные реактивные методы определения паров ртути в воздухе. А вот среди арабских калифов к концу 1-го тысячелетия считалось особенно «шикарным» держать в саду пруды, заполненные ртутью. На серебряной поверхности расстилали подушки и возлежали на них, не задумываясь о том, что загрязняют окружающую среду!
И в наши дни о некоторых видах загрязнений предпочитают помалкивать. Вот уже много лет мы в основном топим углем, превращая его в электрический ток, и никто не хочет задумываться над тем, что мы выбрасываем в воздух. Каменный уголь содержит в тонне до 33 граммов ртути, в среднем же 1 грамм на тонну. Таким образом, только в Соединенных Штатах ежегодно выбрасывается в воздух тысяча тонн ртутных паров, а всего 3 тысячи тонн, и это никак не завышенная цифра. К счастью, не вся ртуть остается в воздухе, она исчезает в конце концов в почве и уходит в воду.
Внимание общественности привлекается только тогда, когда на отдельных участках загрязнение воздуха приобретает избыточно высокие концентрации. Возьмем, к примеру, спор о двуокиси серы SO2. Это бесцветный, резко пахнущий газ, который, в частности, возникает при сгорании угля и нефти, при химических реакциях серы (и ее соединений) с кислородом. В каждом учебнике по химии говорится, что этот газ ядовит. Между тем это отнюдь не единственное ядовитое соединение серы, имеющееся в воздухе! Даже сама природа выбрасывает в атмосферу сероводород и бесчисленный ряд других серных соединений. Если суммировать их все, мы получим 220 000 000 тонн серы в год, то есть в семь раз больше, чем ее производит вся мировая промышленность (приблизительно 30 миллионов тонн). Загрязнение воздуха серными газами наполовину приходится отнести на счет естественного образования сероводорода, а двуокись серы составляет лишь треть от общего количества. Предполагают, будто все эти ядовитые газы остаются в воздухе и их концентрация постоянно возрастает, на самом деле они за несколько дней превращаются в сульфаты, то есть в плохо растворимые соли, которые дождями и снегом заносятся в почву, забираются частично растениями, которые нуждаются в сере, и вновь вводятся в извечный круговорот природы.
Мы точно не знаем, сколько соединений серы находится в верхних слоях земной атмосферы, по-видимому, там имеются лишь незначительные их количества. При попытке набросать схему круговорота серы в природе мы убеждаемся, что относительно некоторых количеств располагаем совершенно недостаточными данными, что естественного круговорота серы мало, и в наши дни мы дополнительно вводим в почву серные соединения в качестве удобрений, особенно для роста трав, а ведь с точки зрения ботаники все наши злаки относятся к травам! В почве не хватает и азота, и фосфора, и калия, чтобы получать достаточные урожаи. Уже в 1970 году один английский ученый озабоченно спросил: «Что произойдет, если мы действительно перестанем „загрязнять“ воздух двуокисью серы? Какими способами нам придется восполнять тогда нехватку серы в почве?»
Желания высказать нетрудно, однако мало кто задумывается о последствиях их исполнения. Уточнить истинное значение выражения «загрязнение воздуха» сложно: с одной стороны, мы имеем дело с очень малыми концентрациями, с другой — земная атмосфера не простая лаборатория. В то же время эксперименты необходимы, одни только умозрительные модели и расчеты не могут решить весь круг проблем. Нельзя не учесть влияния поверхности суши и моря. Взаимовлияния давления воздуха, влажности, температуры, движения воздуха столь многообразны, что трудно воспроизвести их в лабораторных условиях.
Можно составить бесконечные списки желательных исследований, вместо этого назовем лишь некоторые из принципиальных вопросов, на которые пока не дано исчерпывающих ответов:
1) Какие «загрязнения воздуха» переходят в морские воды и в каких размерах?
2) Похоже, что окислы азота в атмосфере возникают в результате окисления аммиака. Как оно детально проходит и какое количество окислов дает процесс?
3) Мы знаем, откуда берется в атмосфере метан (болотный газ), а откуда берутся прочие углеводороды? Какая часть от них выработана лесными массивами Земли?