Любой подросток на улицах Гёттингена[59]
понимает геометрию четырехмерного пространства лучше Эйнштейна. Но именно Эйнштейн смог решить задачу.Почему? Потому что Эйнштейн обладал уникальной способностью представлять себе, как устроен мир, «видеть» его мысленным взором. Уравнения приходили к нему позже; они были языком, с помощью которого он переносил свои образы в реальность. Для Эйнштейна общая теория относительности не набор уравнений, это мысленный образ мира, с большим трудом переведенный на язык уравнений.
Главная идея теории состоит в том, что пространство-время искривляется. Если бы пространство-время имело только два измерения и мы жили бы на некоем подобии плоскости, то было бы нетрудно представить себе, что означают слова «физическое пространство искривляется». Это означало бы, что физическое пространство, в котором мы живем, не такое, как плоский стол, а напоминает поверхность с горами и долинами. Но мир, в котором мы обитаем, имеет не два измерения, а три. На самом деле даже четыре, если учитывать время. Представить себе искривленное пространство в четырех измерениях намного труднее, поскольку наше обыденное восприятие не создает у нас интуитивного ощущения объемлющего пространства, внутри которого искривляется пространство-время. Однако воображение Эйнштейна не испытывало трудности с интуитивным восприятием космического моллюска, в тело которого все мы погружены и который может сжиматься, растягиваться и перекручиваться, порождая пространство вокруг нас. Именно благодаря ясности этого образа Эйнштейн смог первым сформулировать свою теорию.
В самом конце между Гильбертом и Эйнштейном возникло некоторое напряжение. За несколько дней до того, как Эйнштейн опубликовал свое правильное уравнение, Гильберт отправил в журнал статью, в которой показывал, как близко он подошел к тому же решению. По сей день историки науки испытывают сомнения, оценивая соотношение вкладов этих двух гигантов. В какой-то момент их отношения охладились, Эйнштейн боялся, что Гильберт, который был старше и опытнее, станет приписывать себе основные заслуги в создании теории. Однако Гильберт никогда не говорил, что первым открыл общую теорию относительности, и в научном мире, где часто (даже слишком часто) возникают губительные споры о приоритете, эти двое дают поистине замечательный пример мудрости, очищающей научное поле от ненужного напряжения.
Эйнштейн пишет Гильберту замечательное письмо, в котором выражает глубокие чувства по поводу совместно пройденного пути:
Между нами было известное расстройство отношений, причины которого я не хочу анализировать. Я боролся с чувством горечи, вызванным этим, и притом с полным успехом. Я снова думаю о Вас с безмятежной приветливостью и прошу Вас думать обо мне так же. Действительно жаль, когда два настоящих парня, которые как-то вырвались из этого жалкого мира, не доставляют друг другу радости[60]
.Космос
Спустя два года после публикации своих уравнений Эйнштейн решает использовать их для описания пространства всей Вселенной, рассматриваемой в крупном масштабе. И здесь появляется еще одна из его замечательных идей.
Тысячи лет человек задавался вопросом: бесконечна Вселенная или у нее есть предел? Обе гипотезы влекут за собой серьезные проблемы. Бесконечность Вселенной, похоже, не выдерживает следующего рассуждения: если она бесконечна, значит, где-то должен существовать, например, читатель, абсолютно такой же, как вы, который читает эту же самую книгу (бесконечность поистине огромна, и не существует такого числа комбинаций атомов, чтобы заполнить ее объектами, всегда отличающимися друг от друга). Фактически должен существовать не один такой читатель, а бесконечное множество… Но если у Вселенной есть предел, то что же представляет собой ее граница? Как можно придать смысл границе, по другую сторону которой ничего нет? Еще в VI веке философ-пифагореец Архит Тарентский писал: