Американский математик Марк Петерсон в 1979 году первым заметил, что «Рай» описывает Вселенную как 3-сферу. В целом исследователи творчества Данте не очень хорошо знакомы с 3-сферами. Однако любой современный физик или математик легко распознает 3-сферу в дантовском описании Вселенной.
Каким образом Данте могла прийти в голову идея, звучащая столь современно? Я думаю, это в первую очередь отражение глубочайшего интеллекта великого итальянского поэта. Именно его ум делает «Божественную комедию» такой восхитительной. Но также это связано с тем, что Данте писал задолго до того, как Ньютон убедил всех, что бесконечное пространство космоса имеет плоскую евклидову геометрию. Данте был свободен от ограничений, наложенных на нашу интуицию в результате ньютонианского обучения.
Научная культура Данте основывалась главным образом на поучениях его наставника Брунетто Латини, от которого до нас дошел небольшой очаровательный трактат «Li tresor», своего рода энциклопедия средневекового знания, написанная на дивной смеси старофранцузского и итальянского. В «Li tresor» Брунетто подробно объясняет, почему Земля является круглой.
Но он делает это странным для современного читателя способом – в категориях «внутренней», а не «внешней» геометрии. То есть он не пишет, что Земля похожа на апельсин, не говорит, как она выглядит, если смотреть на неё извне, а объясняет ее форму так: «Два рыцаря, которые достаточно далеко проскачут в противоположных направлениях, встретятся на противоположной стороне». И так: «Если бы не мешали моря, человек, начавший идти в одну сторону, вернулся бы в ту же точку Земли, откуда вышел». Иными словами, он использует внутреннюю, а не внешнюю точку зрения – с позиции того, кто идет по Земле, а не того, кто смотрит на нее со стороны. На первый взгляд, это может показаться бессмысленным, усложненным способом объяснения того, что Земля является шаром. Почему Брунетто просто не говорит, что Земля похожа на апельсин? Но с другой стороны, если мы скажем, что муравей ползет по апельсину, то в какой-то момент он окажется в перевернутом положении и должен будет удерживаться крошечными присосками на ногах, чтобы не упасть. Однако путешественник, идущий по Земле, никогда не оказывается в перевернутом положении и не нуждается в присосках на ногах. Так что описание Брунетто на самом деле не такое уж странное.
Теперь задумайтесь над этим. Некто узнал от своего учителя, что форма поверхности нашей планеты такова, что, двигаясь все время по прямой линии, мы возвращаемся в точку, откуда вышли. Вероятно, не так уж трудно сделать следующий очевидный вывод и осознать, что форма всей Вселенной такова, что, двигаясь все время по прямой линии, мы вернемся в ту же точку, из которой отправились: 3-сфера – это пространство, в котором «два крылатых рыцаря, способных
Метод, разработанный Гауссом для описания кривых поверхностей и обобщенный Риманом для описания искривления пространства в трех и более измерениях, в основе своей следует пути Брунетто Латини. Идея, можно сказать, состоит в том, чтобы описывать кривизну пространства не как «видимую со стороны», говоря, как оно искривляется во внешнем пространстве, а в тех понятиях, которые может воспринимать наблюдатель, находящийся
Эйнштейновское пространство-время искривлено не в том смысле, что оно изогнуто «во внешнем пространстве». Оно искривлено в том смысле, что его внутренняя геометрия, то есть сеть расстояний между его точками, которые можно измерять, оставаясь внутри него, не соответствует геометрии плоского пространства. Это пространство, где неверна теорема Пифагора точно так же, как она неверна на поверхности Земли[66]
.