Читаем Невидимая Вселенная. Темные секреты космоса полностью

До этого момента мы говорили только о вимпах. Но, как я уже намекнул, перечислив забавные названия, существует ряд других предположений о том, чем может быть темная материя. Я не намерен читать вам целую лекцию обо всех кандидатах на роль частицы темной материи, да и книга эта стала бы просто неподъемной, но парочку альтернатив вимпам я бы все же рассмотрел.

Интересный вариант — это так называемые стерильные нейтрино. Вы, возможно, помните три нейтрино из Стандартной модели. У них еще была очень низкая масса, а подчинялись эти частицы, помимо гравитационного взаимодействия, только слабому. Забавная особенность нейтрино заключается в том, что они ведут себя как трансвеститы Стандартной модели (я же говорил, что они крутые). Вы можете выпустить на волю, например, электронное нейтрино, но, если чуть позже поймать это же нейтрино, может оказаться, что оно превратилось в мюонное нейтрино или в тау-нейтрино. Эта способность нейтрино перевоплощаться не позволяет нам исключить возможность существования новых частиц: что, если три разных нейтрино из Стандартной модели могут так же преобразоваться в один или несколько других типов нейтрино, которые мы еще не обнаружили? И раз они пока не открыты, то, похоже, они не участвуют даже в слабом взаимодействии. Эти нейтрино будут ощущать лишь гравитационные силы. Такие частицы и называются стерильными нейтрино: они ощущают только гравитационное взаимодействие, но в то же время связаны со всем знакомой Стандартной моделью, в которой нейтрино превращаются из стерильных в обычные и наоборот. Темная материя не может состоять из обычных нейтрино, потому что они слишком легкие. А стерильным нейтрино ничто не мешает весить в разы больше, так что темная материя, вполне возможно, полностью или частично состоит из них.

Среди наиболее популярных кандидатов — частица под названием аксион. Точно так же, как и суперсимметричные частицы, аксионы — это гипотетические частицы, придуманные для того, чтобы Стандартная модель выглядела более красиво и логично. Основная задача аксионов — объяснить симметрию в сильном взаимодействии, но в подробности я вдаваться не буду. Если такие частицы существуют, то являются прекрасными претендентами на роль темной материи. Но самое занятное в этой гипотезе следующее: ожидается, что аксионы будут неприлично легкими, даже легче нейтрино. Вот только образуются они совсем по-другому, поэтому все равно могут оказаться темной материей. Поэтому предполагается, что они, даже несмотря на низкую массу, способны двигаться с относительно малой скоростью. Аксионы появляются и в теориях суперсимметрии, что делает их еще более привлекательными кандидатами на роль темной материи. Единственная проблема — пока эти частицы, понятное дело, никто не видел.

Есть еще сильно взаимодействующие частицы (SIMP). Это своего рода ответ сильного взаимодействия вимпам (слабовза- имодействующим массивным частицам). Пока симпы не настолько хорошо вписываются в наблюдения и теорию физики элементарных частиц, как вимпы. Но в любом случае сбрасывать их со счетов не стоит, а если открытие вимпом темной материи заставит себя ждать, то у симпов есть все шансы стать более популярными.

Помимо вимпов и симпов, предполагается существование различных классов частиц темной материи, способных взаимодействовать только друг с другом, игнорируя другие частицы Стандартной модели. Такие модели часто называют самовзаи- модействующей темной материей.

Охота на темную материю — отличный пример того, как взаимодействуют в наше время изучающая самые огромные из существующих объекты астрономия и физика элементарных частиц, объектом исследований которой является микромир. В одиночку физики, изучающие элементарные частицы, не смогут ответить на вопрос, что же все-таки представляет собой темная материя. Без помощи астрономов им не обойтись. Если астрономы смогут доказать, что Вселенная наполнена, скажем, вимпами, симпами или самовзаимодействующей темной материей, то у физиков, ищущих более всеобъемлющие теории, чем Стандартная модель, появится новая информация, и она существенно облегчит им задачу. Мы живем во времена, когда микроскопическая физика элементарных частиц столкнулась с наукой о Большом взрыве и наблюдениями за самыми огромными структурами, которые только существуют во Вселенной. Вот и сошлись два противоположных конца физической измерительной рулетки.


«МАЧО» бросают вызов маленьким частицам

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже