В 1980 году случайный разговор в Гарварде с Дэвидом Нельсоном дал новую цель всем моим трудам по теме аморфных материалов. Мои компьютерные модели можно было адаптировать для проверки гипотезы Нельсона и Тонера о кубатическом веществе.
Дав своей аудитории в Пенне краткое введение в историю вопроса, я перешел к кульминации своей лекции. Если предположение о кубатической фазе верно, то атомные связи в моей новой компьютерной модели не должны оказаться расположенными случайным образом. В среднем они должны тяготеть к “кубической ориентации”, то есть стремиться к выравниванию вдоль ребер куба.
Мы разработали сложный математический тест для эксперимента, призванного проверить, демонстрирует ли усредненная ориентация связей ожидаемую кубическую симметрию, и вывели количественный параметр, характеризующий, насколько сильно проявляется это кубическое выравнивание.
Результат оказался… абсолютно провальным. Мы не нашли никаких признаков преимущественного выравнивания связей вдоль ребер куба, предсказанного Нельсоном и Тонером.
Однако совершенно случайно мы открыли нечто даже более интересное. Разрабатывая количественный математический тест для проверки ориентации атомных связей в соответствии с кубической симметрией, мы поняли, что будет несложно адаптировать этот тест к поиску любых других возможных вращательных симметрий. Поэтому вдобавок мы использовали тест для количественной оценки каждой симметрии по степени выравнивания атомных связей вдоль различных направлений.
К нашему огромному удивлению, именно запрещенная симметрия получила гораздо более высокую оценку, чем все остальные, – та самая невозможная симметрия икосаэдра, фигуры, изображенной ниже слева.
Я знал, что некоторые слушатели в аудитории уже должны быть знакомы с икосаэдром, поскольку эта трехмерная фигура использовалась в качестве игральной кости (см. фото внизу справа) в популярной игре
Важная особенность икосаэдра состоит в том, что, осматривая его со стороны любой из вершин, мы наблюдаем пятиугольную форму с симметрией пятого порядка. Ту самую симметрию пятого порядка, запрещенную для двумерных замощений и трехмерных кристаллов.
Разумеется, нет ничего невозможного в использовании одной плитки в форме правильного пятиугольника. Одиночную плитку можно взять любой формы. Однако невозможно покрыть пол одними лишь правильными пятиугольниками, не оставляя зазоров. То же относится и к икосаэдру. Можно сделать отдельную трехмерную игральную кость в форме икосаэдра. Но вот заполнить пространство икосаэдрами так, чтобы между ними не осталось пустот и отверстий, уже не получится, как показано на фото выше.
При таком числе вершин, каждая из которых обладает запрещенной симметрией пятого порядка, икосаэдр был прекрасно известен исследователям, изучавшим строение вещества, в качестве самой запретной симметрии в расположении атомов. Этот факт считался настолько фундаментальным, что часто излагался в первой главе учебников. И все же икосаэдрическая симметрия каким-то образом получила самую высокую оценку по выравниванию атомных связей в нашем компьютерном эксперименте.
Строго говоря, наши результаты прямо не противоречили законам кристаллографии. Эти правила применимы только к макроскопическим фрагментам вещества, содержащим десятки тысяч атомов и более. Для намного меньших групп атомов, как те, что изучались в нашей модели, такого категорического запрета не существовало.
В предельном случае маленького кластера, содержащего, например, лишь тринадцать одинаковых атомов золота, межатомные силы естественным образом приводят атомы к икосаэдрическому расположению. Один атом оказывается в центре, а двенадцать окружающих его атомов размещаются на вершинах икосаэдра. Так происходит потому, что межатомные силы работают сродни пружинам и стремятся расположить атомы в форме плотно упакованной симметричной фигуры. Тринадцать атомов образуют икосаэдр потому, что в данном случае он является самой симметричной из всех достижимых плотно упакованных конфигураций. Однако с добавлением все новых и новых атомов икосаэдрическая симметрия становится все менее предпочтительной. Как видно на фото с игральными костями для