На проведение нашей FIB-хирургии и выполнение необходимых измерений ушло целых шесть месяцев. Для подготовки образца понадобился опыт Яо Наня. Сначала он вместе со мной, Чейни и Линкольном внимательно рассмотрел крошечный образец. Затем исключительно аккуратно нанес на него чрезвычайно узкую полоску платины в строго определенном месте, где, по-видимому, состав обладал наибольшей вариативностью. Это место обозначено на предыдущем изображении пунктирной линией. Ширина нанесенной платиновой полоски составляла меньше сотой доли толщины человеческого волоса.
Затем образец был отправлен эксперту по FIB Джамилю Кларку в
Пучок ионов создал вокруг платиновой полоски углубление. В нем осталась перегородка из метеоритного материала толщиной с паутинку, стоявшая в микроскопическом кратере подобно хрупкому крылу бабочки. С исключительной осторожностью Джамиль отделил этот тончайший фрагмент от остальной части образца и отправил все нам обратно.
Когда мы открыли упаковку, почти прозрачный срез был едва виден.
Первоначально срез состоял из силикатного материала, который обычно содержится в матрице, окружающей хондры углистых хондритов. Но было одно существенное отличие. В данном случае изображение показывало, что силикатный материал расплавился, а затем быстро остыл. Похоже, история начинала складываться воедино, поскольку это соответствовало червеобразным алюминиевым нитям, найденным нами в другой части зерна, которые также указывали на расплавление и последующее быстрое остывание.
Поскольку охлаждение силиката произошло очень быстро, мелкодисперсный беспорядок, обнаруженный нами с помощью просвечивающего электронного микроскопа, оказался стоп-кадром древнего бурного процесса. Жидкость образовала реки и ручьи между остатками, которые не расплавились, и каждый поток быстро затвердевал, формируя структуры, похожие на лестницы (см. фото вверху).
Белые ступеньки этих лестниц состоят из стекловидного вещества – аморфного диоксида кремния. Но, что еще важнее, темные их ступеньки состоят из редкого минерала аренсита. Как и стишовит, который был обнаружен в другом нашем образце, аренсит образуется только при сверхвысоком давлении. По подсчетам Чейни и Линкольна, оно должно было как минимум в 50 000 раз превышать нормальное атмосферное давление на Земле. А температура должна была достигать не менее 1100 градусов Цельсия, чтобы расплавить и алюминий, и медь.
Продолжив изучение остальной части силиката в зерне № 125, за пределами среза FIB, мы обнаружили, что она состоит из минералов, образующих формы, напоминающие рыхлую матрицу того зерна, которое мы с Гленном анализировали вскоре после возвращения из экспедиции. Разница заключалась в том, что на этот раз зерна минерала матрицы были спрессованы в плотный комок, чего как раз и следовало ожидать в случае, если он подвергся высокоскоростному удару другого астероида в космосе. Ударная волна, вызванная столкновением, могла сжать и уплотнить рыхлое вещество матрицы в те формы, которые мы видели под микроскопом. И столкновение расплавило бы матрицу в определенных местах, где температура и давление были особенно высокими. Открытие лестниц из аренсита и кремния, а также анализ смятой матрицы давали нам прямое количественное доказательство того, что метеорит Хатырка подвергся одному из самых мощных ударов, следы которых когда-либо обнаруживались в углистых хондритах CV3.
Все, что мы узнали на тот момент, подтверждало уникальность метеорита Хатырка. Мы с Лукой чувствовали мощнейший прилив сил и готовность взяться за следующие открытые вопросы.