Читаем Ньютон полностью

И всё же время от времени ему приходилось возвращаться к математическим проблемам. Чаще всего не по своей воле, а под давлением внешних обстоятельств. В декабре 1672 года Коллинс сообщил ему, что Рене де Шлюс, математик из Голландии, разработал метод касательных, сходный с Ньютоновым, и собирается опубликовать его в «Философских трудах». Приоритет Ньютона опять был поставлен под угрозу. Получив статью для просмотра, Ньютон тут же вернул её Коллинсу, пояснив, что в ней приводится лишь один частный пример того более общего случая, который он разработал. Вскоре с запросом об этом обратился секретарь Королевского общества Ольденбург, а через него и Шлюс, который хотел подробностей. Ньютон отказался их представить.

Тяжбам учёных семнадцатого столетия способствовала сама научная обстановка того времени — отсутствие или недостаток научных журналов, замена их книгами и письмами. Оба метода имели свои недостатки — писание книг занимало много времени, а переписка имела ограниченный круг читателей. Наука же, особенно математика, активно подталкиваемая практикой, развивалась быстро. Это приводило к переоткрытию уже открытого, а нередко и к плагиату.

Ньютон к тому времени стал уже известным математиком, и к нему обращались со всех концов страны. Королевский землемер Джон Лэйси обратился к нему с просьбой помочь рассчитать площади сложной формы. Коллинс подкинул ему задачку на проценты: «Определить, при какой учётной ставке (N %) сумма В, положенная в банк, через 31 год будет стоить А?»

Ньютон — Коллинсу

18 февраля 1670 года

«Сэр…вот решение задачи о процентах, и, если Вы найдёте его стоящим, можете поместить его в «Философских трудах», только без моей подписи, ибо я не вижу ничего желательного в славе, даже если бы я был способен заслужить её. Это, возможно, увеличило бы число моих знакомых, но это как раз то, чего я больше всего стараюсь избегать…

Много обязанный Вам, Ваш слуга

И. Ньютон.»

Ньютон оказывал большую услугу вычислителям-практикам. Один из них, Джон Смит, по просьбе Коллинса получил разрешение переписываться с Ньютоном. Смит рассчитывал для практических целей таблицы квадратов, кубов, квадратных и кубических корней и других функций для всех целых чисел от единицы до десяти тысяч. Раздавленные тяжестью вычислительной задачи, он просил у Ньютона помощи и совета. Ньютон послал ему объяснение биномиальной теоремы. Смит, понявший, что ему не нужно будет теперь извлекать сотни корней с точностью до 10–11 знаков для каждого числа, был безмерно счастлив благодаря Ньютону. А тот с удовольствием поработал над этой проблемой, увлёкся ею и заложил основы современной теории интерполяций, впоследствии описаной в неконченном мемуаре 1676 года. Он определяет интерполяцию как способ нахождения ординаты кривой между двумя её известными точками.

В самом начале 1673 года в Лондон приехал Годфрид Вильгельм Лейбниц. Этот молодой немецкий дипломат из Майнца с прошлого года жил в Париже, где свёл знакомство с самыми известными учёными и членами Французской академии. Учителем его был сам Христиан Гюйгенс. Лейбниц прибыл в Лондон в январе, а уже в феврале стал членом Королевского общества. После отъезда ему удалось наладить активную переписку как с Ольденбургом, так и с Коллинсом, которые и сообщили ему о важных открытиях Ньютона, в частности, о его методе бесконечных рядов. Лейбниц пока помалкивал о своих успехах и больше спрашивал о чужих. Он понимал, что будущее человека материально не обеспеченного во многом зависит от его научных достижений; он старался не растрачивать раньше времени своего научного капитала. В апреле 1675 года он получил от Коллинса большое письмо с подробными разъяснениями всего сделанного Ньютоном в области бесконечных рядов. Размышляя на эту тему, Лейбниц осенью 1675 года самостоятельно набрёл на методы дифференциального и интегрального исчисления.

Ньютон в то время даже не подозревал о существовании математика Лейбница, не знал о его работах. Не знал он и о том, что содержание его переписки с Коллинсом и кое-что из его работы «De analysi…» были известны Лейбницу. Конечно, если бы Лейбниц работал в другой области, он немного смог бы извлечь из того, что ему было послано. Но он в совершенстве знал проблему, знал конечный результат. Более того, он знал, что задача была решена с помощью бесконечных рядов.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже