В 1676 году Ольденбургу удалось убедить Ньютона ответить на письма Лейбница. Лейбниц просил Ньютона объяснить, как он получил ряды, выражающие синус угла, если дана дуга, и дугу, когда дан синус. Ньютон направил Лейбницу через Ольденбурга два письма, впоследствии послужившие для него основанием для обвинений Лейбница в плагиате, — знаменитые «Epistola prior» и «Epistola posterior». В письмах содержались выжимки из трудов «De analysi…» и «De methodis…». Он полностью раскрыл биномиальную теорему и дал девять примеров её применения. Ньютон утверждал, что, используя ряды, можно определять площади, объёмы, центры тяжести и т. д. Он писал, что знает алгоритм того, что мы назвали бы теперь дифференцированием и интегрированием, но не дал его описания.
«Из всего этого можно видеть, насколько эти бесконечные уравнения расширяют границы анализа; с их помощью можно совладать практически с любыми задачами, кроме численных задач Диофанта и подобных им. И всё же даже все эти результаты, вместе взятые, не являются универсальными, пока не используются некоторые усовершенствованные методы использования бесконечных рядов… Но как действовать в этих случаях, сейчас нет времени объяснять…»
Лейбниц не мог скрыть своего восхищения.
26 июля 1676 года
«Ваше письмо содержит более ценные идеи по анализу, чем множество толстых томов, которые опубликованы по этим вопросам… Открытие Ньютона стоит его гения, который так ярко заявил о себе в его оптических экспериментах и в его катодиоптрической трубе.»
Однако, продолжал Лейбниц, он и сам знает кое-что о бесконечных рядах и может предложить свой метод преобразований, в связи с чем он хотел бы задать Ньютону несколько вопросов.
Лейбниц поспешил в Лондон и пробыл там десять октябрьских дней по пути в Ганновер, где он получил место при дворе герцога Брауншвейг-Люнебургского. Единственное, что удалось ему, — это встретиться с Коллинсом, который, будучи довольно слабым математиком, не смог поддержать перед Лейбницем престижа своей страны. Чтобы как-то скрасить явно слабое впечатление, которое он произвёл на Лейбница, Коллинс показал ему свои архивы, в том числе полный текст «De analysi» и письмо Ньютона о его методе касательных.
Заметки, сделанные Лейбницем при этом посещении — их раскопали историки, — указывают на его большой интерес к рядам и полное отсутствие интереса к тем местам в письмах Ньютона и в «De analysi», которые имели прямое отношение к дифференциальному и интегральному исчислению. Создаётся впечатление, что они его не заинтересовали лишь потому, что он их уже энал.
Коллинс не рассказал Ньютону об этом посещении. Лейбниц тоже старался не упоминать о том, что он видел у Коллинса. Коллинс, чувствуя некоторую вину, настаивал, чтобы Ньютон поскорее опубликовал свои труды. А Ньютон, занятый бесконечной перепиской и дискуссиями по проблеме цветов, не хотел ввязываться в новое дело. Не зная ничего о визите Лейбница, он через неделю после того, как Лейбниц отбыл в Ганновер, написал «Epistola posterior», которое Викинс старательно переписал перед посылкой в Лондон. В письме Ньютон подробно раскрывал, как он пришёл к биномиальной теореме, а также сообщал о многих своих неоконченных математических проектах. Он снова и снова возвращается к методу флюксий, снова и снова говорит о бесконечных рядах. Метод флюксий он так и не раскрывает, описывая его лишь в анаграмме. Он намекает на то, что метод, которым он обладает и который описан в работе «De analysi…», содержит метод касательных, позволяющий находить максимум и минимум функций.
«Основание этих операций фактически довольно очевидно, но, поскольку я не могу дать сейчас их объяснения, я предпочитаю раскрыть их следующим образом:
Gaccdaeae 13 eff 7i 319 n 404 qr 4s 8t 12 yz
На этом основании я пытался упростить теории, которые связаны с нахождением квадратур кривых, и пришёл к некоторым общим теоремам.»
Затем он иллюстрирует свою теорему примерами. Это письмо многое раскрывает, но ещё больше содержит загадок. Анаграмма скрывает следующий текст: «Дано уравнение, включающее любое число текущих количеств, найти флюксии, и наоборот». В конце письма другая анаграмма скрывает метод решения дифференциальных уравнений с помощью степенных рядов:
5 accdae 10 eff h 12 i… rrr sssss ttuu.
Ньютон утверждал, что пишет кратко, ибо разработал эти теории давно и сейчас они уже не представляют для него интереса; вот уже пять лет он ими не занимается. Он упоминает и о том, что ещё не окончил работу «De methodis…», поскольку никак не может заставить себя возвратиться к ней. В сопроводительном письме Ольденбургу Ньютон писал: «Надеюсь, что это письмо настолько полностью удовлетворит господина Лейбница, что для меня не возникнет необходимости писать ещё что-нибудь по этому вопросу. У меня в голове сейчас другое, всякие отвлечения нежелательны…»