Читаем Новая философская энциклопедия. Том первый полностью

АЛГЕБРА ЛОГИКИ— одна из осн. частей математической логики, основанная на применении алгебраических методов к логике. Возникнув в сер. 19 в. в трудах Буля и развиваясь затем в работах Джевонса, Шредера, Пирса, Порец- кого и др., алгебра логики имела своим предметом классы (как объемы понятий), соотношения между классиками по объему и связанные с этим операции над ними. Позднее, в связи с появлением в 70-х гг 19 в. множеств теории, поглотившей часть этих задач, предмет алгебры логики значительно изменился. Основным ее предметом стали высказывания (суждения, предложения), рассматриваемые со стороны их логических значений (истина, ложь, бессмыслица и т. п.), и логические операции над ними. В основе обычной, т. н. Классической алгебры логики лежит абстракция высказывания как величины, имеющей одно (и только одно!) из двух значений: «истина» или «ложь» (короче: И. Л.) или могущей принимать оба эти значения (но не одновременно). В первом из этих случаев имеем индивидуальное высказывание (высказывание в узком, наиболее принятом смысле этого слова), во втором - высказывание-функцию. Примеры высказываний: «2-2=4 », «0<0 », «Сократ - человек», «0=1», «2*2=5», «х2=у»ч «г - человек», «Если x=yt то у=0», «Если х=2, то л^=4», «х равняется у или х не равняется у». Первые три высказывания имеют значение И (т. е. истины), 4-е и 5-е - значение Л (т. е. ложны), 6-е, 7-е, 8-е - высказывания-функции (если, напр., значениями буквенных переменных х и у могут быть целые числа, а переменной z - живые существа), 9-е и 10-е имеют значение И (при всех возможных значениях переменных х и у). Последние три из этих высказываний являются сложными, в отличие от предшествующих им простых. Абстракция в алгебре логики идет дальше. Все истинные высказывания отождествляются между собой, т. к. истинное высказывание не отличается от другого истинного высказывания по значению (от других сторон высказываний в алгебре логики отвлекаются). Ложные высказывания тоже отождествляются. При рассмотрении же высказываний-функций в алгебре логики обычно отвлекаются от рассмотрения зависимости их от иных переменных, кроме таких, значениями которых тоже являются высказывания, вводя для их рассмотрения буквенные переменные, которые называют переменными высказываниями. Таковыми являются буквы А, /?, С, ..., Ar Av Ау ... и т. п. (при этом выбор букв - вопрос не существа, а соглашения) при условии, что они играют роль переменных, значениями которых могут быть всевозможные индивидуальные высказывания, т. е., в силу упомянутых абстракций, «константы» И и Л. Кроме простых высказываний, обозначаемых отдельными буквами А, В... или И, Л, рассматриваются также сложные высказывания - результат соединения высказываний связками или отрицания их (соответствующего частице «не»). Сложные высказывания рассматривают как функции от входящих в них буквенных переменных А, В, С и т. д. Так появляется понятие функции алгебры логики - функции от аргументов, являющихся переменными высказываниями, т.е. принимающих значения И, Л, которая (функция) может принимать тоже лишь эти значения. Вводятся алгебраич. операции над высказываниями: конъюнкция AB (читается «А и В», другие обозначения: AB, А&В, А/\В\ другие названия: логическое умножение, булево умножение), дизъюнкция АуВ (читается «А или В»; другое обозначение: Л+Д другие названия: логическое сложение, булево сложение), импликация А^В (читается: «Если А, то В» или «А влечет В», или «А имплицирует В», или «Из А следует В»; другое обозначение: АэВ\ другое название: логическое следование), эквиваленция А~В (читается «А эквивалентно В» или «А равнозначно В», или «А, если и только если В»; другие обозначения: А=В, А<-+В, А=В\ другие названия: эквивалентность, равнозначность, равносильность), отрицание A (читается: «не А», или «Л ложно», или «неверно, что А», или «отрицание/!»; другие обозначения: -А, -А, Л'; другое название: инверсия), а также иногда и другие операции. Одной из важных сторон формализации, принимаемой в алгебре логики, является то, что знаками этих операций (т. е. по смыслу, соответствующими им связками) можно соединять любые выказывания, без ограничения, в том числе и те, которые сами являются сложными. При этом удается точно и строго описать класс всех рассматриваемых выражений алгебры логики. В данном случае он состоит из констант И и Л, переменных А и В... и всех тех выражений, которые получаются из них путем конечного числа соединений знаками «•», «V», «—>», «~» и отрицаний. Это связано с требованием, чтобы операции задавались таблично как функции и значение сложного высказывания зависело только от значений составляющих его простых высказываний. Основная суть алгебры логики как системы методов состоит в использовании преобразований высказываний на основе алгебраических законов,

73

Перейти на страницу:

Все книги серии Новая философская энциклопедия.

Новая философская энциклопедия. Том второй Е—М
Новая философская энциклопедия. Том второй Е—М

Новая философская энциклопедия дает РѕР±Р·ор РјРёСЂРѕРІРѕР№ философии во всем богатстве ее основных понятий, произведений, исторических традиций, школ, имен, обобщает достижения СЂРѕСЃСЃРёР№СЃРєРёС… и зарубежных философских исследований за последние десятилетия, является самым полным в отечественной литературе СЃРІРѕРґРѕРј философских знаний на рубеже тысячелетий. Энциклопедия содержит около пяти тысяч статей, авторами которых являются более четырехсот известных ученых - специалистов в различных областях философии.При подготовке данного издания внесены некоторые уточнения и дополнения. Р' частности, в первом томе помещена статья, посвященная 80-летию Р

авторов Коллектив , Вячеслав Семенович Стёпин , Г Ю Семигин

Философия / Энциклопедии / Образование и наука / Словари и Энциклопедии
Новая философская энциклопедия. Том третий Н—С
Новая философская энциклопедия. Том третий Н—С

Новая философская энциклопедия дает РѕР±Р·ор РјРёСЂРѕРІРѕР№ философии во всем богатстве ее основных понятий, произведений, исторических традиций, школ, имен, обобщает достижения СЂРѕСЃСЃРёР№СЃРєРёС… и зарубежных философских исследований за последние десятилетия, является самым полным в отечественной литературе СЃРІРѕРґРѕРј философских знаний на рубеже тысячелетий. Энциклопедия содержит около пяти тысяч статей, авторами которых являются более четырехсот известных ученых - специалистов в различных областях философии.При подготовке данного издания внесены некоторые уточнения и дополнения. Р' частности, в первом томе помещена статья, посвященная 80-летию Р

авторов Коллектив , Вячеслав Семенович Стёпин , Г Ю Семигин

Философия / Энциклопедии / Образование и наука / Словари и Энциклопедии
Новая философская энциклопедия. Том четвёртый Т—Я
Новая философская энциклопедия. Том четвёртый Т—Я

Новая философская энциклопедия дает РѕР±Р·ор РјРёСЂРѕРІРѕР№ философии во всем богатстве ее основных понятий, произведений, исторических традиций, школ, имен, обобщает достижения СЂРѕСЃСЃРёР№СЃРєРёС… и зарубежных философских исследований за последние десятилетия, является самым полным в отечественной литературе СЃРІРѕРґРѕРј философских знаний на рубеже тысячелетий. Энциклопедия содержит около пяти тысяч статей, авторами которых являются более четырехсот известных ученых - специалистов в различных областях философии.При подготовке данного издания внесены некоторые уточнения и дополнения. Р' частности, в первом томе помещена статья, посвященная 80-летию Р

авторов Коллектив , Вячеслав Семенович Стёпин , Г Ю Семигин

Философия / Энциклопедии / Образование и наука / Словари и Энциклопедии

Похожие книги

Homo ludens
Homo ludens

Сборник посвящен Зиновию Паперному (1919–1996), известному литературоведу, автору популярных книг о В. Маяковском, А. Чехове, М. Светлове. Литературной Москве 1950-70-х годов он был известен скорее как автор пародий, сатирических стихов и песен, распространяемых в самиздате. Уникальное чувство юмора делало Паперного желанным гостем дружеских застолий, где его точные и язвительные остроты создавали атмосферу свободомыслия. Это же чувство юмора в конце концов привело к конфликту с властью, он был исключен из партии, и ему грозило увольнение с работы, к счастью, не состоявшееся – эта история подробно рассказана в комментариях его сына. В книгу включены воспоминания о Зиновии Паперном, его собственные мемуары и пародии, а также его послания и посвящения друзьям. Среди героев книги, друзей и знакомых З. Паперного, – И. Андроников, К. Чуковский, С. Маршак, Ю. Любимов, Л. Утесов, А. Райкин и многие другие.

Зиновий Самойлович Паперный , Йохан Хейзинга , Коллектив авторов , пїЅпїЅпїЅпїЅпїЅ пїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅ

Биографии и Мемуары / Культурология / Философия / Образование и наука / Документальное
Молодой Маркс
Молодой Маркс

Удостоена Государственной премии СССР за 1983 год в составе цикла исследований формирования и развития философского учения К. Маркса.* * *Книга доктора философских наук Н.И. Лапина знакомит читателя с жизнью и творчеством молодого Маркса, рассказывает о развитии его мировоззрения от идеализма к материализму и от революционного демократизма к коммунизму. Раскрывая сложную духовную эволюцию Маркса, автор показывает, что основным ее стимулом были связь теоретических взглядов мыслителя с политической практикой, соединение критики старого мира с борьбой за его переустройство. В этой связи освещаются и вопросы идейной борьбы вокруг наследия молодого Маркса.Третье издание книги (второе выходило в 1976 г. и удостоено Государственной премии СССР) дополнено материалами, учитывающими новые публикации произведений основоположников марксизма.Книга рассчитана на всех, кто изучает марксистско-ленинскую философию.

Николай Иванович Лапин

Философия