Начнем с того, что представим себе одномерное существо-точку, живущее в одномерном пространстве, т. е. на прямой линии. В этом «тесном» мире имеются только одно измерение — длина и только два возможных направления — вперед и назад.
У двумерных воображаемых существ, «плоскатиков», возможностей значительно больше. Они уже могут перемещаться в двух измерениях, в их мире помимо длины есть еще и ширина. Но они точно так же не способны выйти в третье измерение, как и существа-точки не могут «выпрыгнуть» за пределы своей прямой линии. Одномерные и двумерные обитатели в принципе могут прийти к теоретическому заключению о возможности существования большего числа измерений, но путь в следующее измерение для них закрыт.
По обе стороны от плоскости расположено трехмерное пространство, в котором обитаем мы, трехмерные существа, неведомые для двумерного жителя, заключенного в свой двумерный мир: ведь даже видеть он может только в пределах своего пространства. Ввиду этого о существовании трехмерного мира и его обитателей двумерный житель мог бы узнать только в том случае, если бы какой-нибудь человек, к примеру, проткнул плоскость пальцем. Но и тогда двумерное существо могло бы наблюдать только двумерную область соприкосновения между пальцем и плоскостью. Вряд ли этого было бы достаточно, чтобы сделать какие-то заключения о «потустороннем», с точки зрения двумерного жителя, трехмерном пространстве и его «таинственных» обитателях.
Но точно такое же рассуждение можно провести и для нашего трехмерного пространства, если бы оно было заключено в каком-то еще более обширном, четырехмерном пространстве, подобно тому как двумерная поверхность заключена в нем самом.
Однако выясним сперва, что вообще представляет собой четырехмерное пространство. В трехмерном пространстве существуют три взаимно перпендикулярных «основных» измерения — «длина», «ширина» и «высота» (три взаимно перпендикулярных направления осей координат). Если бы к этим трем направлениям можно было добавить четвертое, также перпендикулярное к каждому из них, то пространство имело бы четыре измерения, было бы четырехмерным.
С точки зрения математической логики рассуждение о четырехмерном пространстве абсолютно безукоризненно. Но само по себе оно ничего не доказывает, поскольку логическая непротиворечивость еще не является доказательством существования в физическом смысле. Такое доказательство способен дать только опыт. А опыт свидетельствует о том, что в нашем пространстве через одну точку можно провести лишь три взаимно перпендикулярные прямые линии.
Обратимся еще раз к помощи «плоскатиков». Для этих существ третье измерение (в которое они не могут выйти) — все равно что для нас четвертое. Однако есть и существенная разница между воображаемыми плоскими существами «плоскатиками» и нами, обитателями трехмерного пространства. В то время как плоскость является двумерной частью реально существующего трехмерного мира, все имеющиеся в нашем распоряжении научные данные убедительно свидетельствуют о том, что мир, в котором мы живем, геометрически трехмерен и не является частью какого-то четырехмерного мира. Если бы такой четырехмерный мир действительно существовал, то в нашем трехмерном мире могли бы происходить некоторые «странные» явления.
Рис. 21.
Вернемся снова к двумерному плоскому миру. Хотя его обитатели и не могут выходить за пределы плоскости, все же, благодаря наличию внешнего трехмерного мира, некоторые явления, в принципе, могут здесь протекать с выходом в третье измерение. Это обстоятельство в ряде случаев делает возможным такие процессы, которые в самом по себе двумерном мире не могли бы происходить.
Представим себе, например, нарисованный в плоскости обыкновенный циферблат от часов. Какими бы способами мы ни вращали и перемещали этот циферблат, оставаясь в плоскости, нам никогда не удастся изменить направление расположения цифр так, чтобы они следовали друг за другом против часовой стрелки. Этого можно добиться, лишь «изъяв» циферблат из плоскости в трехмерное пространство, перевернув его, а затем снова возвратив в нашу плоскость.
В трехмерном пространстве подобной операции соответствовала бы, например, такая. Можно ли перчатку, предназначенную для правой руки, путем одних только перемещений в пространстве (т. е. не выворачивая наизнанку) превратить в перчатку для левой руки? Каждый легко может убедиться в том, что подобная операция неосуществима. Однако при наличии четырехмерного пространства этого можно было бы достичь так же просто, как и в случае с циферблатом.
Рис. 22.
Мы не знаем выхода в четырехмерное пространство. Но дело не только в этом. Его, видимо, не знает и природа. Во всяком случае, никаких явлений, которые можно было бы объяснить существованием четырехмерного мира, охватывающего наш трехмерный, мы не знаем.
А жаль!..
Если бы четырехмерное пространство и выход в него действительно существовали, открывались бы удивительные возможности.