Читаем Новая занимательная астрономия полностью

Представим себе «плоскатика», которому необходимо преодолеть расстояние между двумя точками плоского мира, отстоящими друг от друга, скажем, на 50 км. Если «плоскатик» перемещается со скоростью один метр в сутки, то подобное путешествие займет более ста лет. Но представьте себе, что двумерная поверхность свернута в трехмерном пространстве таким образом, что точки начала и конца маршрута оказались друг от друга на расстоянии всего лишь одного метра. Теперь их отделяет друг от друга совсем небольшое расстояние, которое «плоскатик» мог бы преодолеть всего за одни сутки. Но этот метр лежит в третьем измерении! Это и была бы «нуль-транспортировка», или «гиперпереход».

Аналогичная ситуация могла бы возникнуть и в искривленном трехмерном мире…

Рис. 23. Геометрический смысл фантастического метода нуль-транспортировки.


Как показала общая теория относительности, наш мир действительно обладает кривизной. Об этом мы уже знаем. И если бы еще существовало четырехмерное пространство, в которое погружен наш трехмерный мир, то для преодоления некоторых гигантских космических расстояний достаточно было бы «перескочить» через разделяющую их четырехмерную щель. Вот что имеют в виду писатели-фантасты.

Таковы соблазнительные преимущества четырехмерного мира. Но есть у него и «недостатки». Оказывается, с ростом числа измерений уменьшается устойчивость движения. Многочисленные исследования показывают, что в двумерном пространстве вообще никакое возмущение не может нарушить равновесия и удалить тело, движущееся по замкнутой траектории вокруг другого тела, в бесконечность. В пространстве трех измерений ограничения уже значительно слабее, но все же и здесь траектория движущегося тела не уходит в бесконечность, если только возмущающая сила не слишком велика.

Но уже в четырехмерном пространстве все круговые траектории становятся неустойчивыми. В таком пространстве планеты не могли бы обращаться вокруг Солнца — они либо упали бы на него, либо улетели в бесконечность.

Используя уравнения квантовой механики, можно также показать, что в пространстве, обладающем более чем тремя измерениями, не мог бы существовать как устойчивое образование и атом водорода. Происходило бы неизбежное падение электрона на ядро.

Добавление четвертого измерения изменило бы и некоторые чисто геометрические свойства пространства. Одним из важных разделов геометрии, который представляет не только теоретический, но и большой практический интерес, является так называемая теория преобразований. Речь идет о том, как изменяются различные геометрические фигуры при переходе от одной системы координат к другой. Один из типов таких геометрических преобразований носит наименование конформных. Так называются преобразования, сохраняющие углы.

Точнее, дело обстоит следующим образом. Представьте себе какую-нибудь простую геометрическую фигуру, скажем, квадрат или многоугольник. Наложим на него произвольную сетку линий, своеобразный «скелет». Тогда конформными мы назовем такие преобразования системы координат, при которых наш квадрат или многоугольник перейдет в любую другую фигуру, но так, что углы между линиями «скелета» при этом сохранятся. Наглядным примером конформного преобразования может служить перенесение поверхности глобуса на плоскость — именно так строятся географические карты.

Еще в прошлом столетии математик Б. Риман показал, что любая плоская сплошная (т. е. без «дыр», или, как говорят математики, односвязная) фигура может быть конформно преобразована в круг.

Вскоре современник Римана Ж. Лиувилль доказал еще одну важную теорему о том, что не всякое трехмерное тело можно конформно преобразовать в шар.

Таким образом, в трехмерном пространстве возможности конформных преобразований далеко не так широки, как в плоскости. Добавление всего лишь одной оси координат накладывает на геометрические свойства пространства весьма жесткие дополнительные ограничения.

Не потому ли реальное пространство именно трехмерно, а не двумерно или, скажем, пятимерно? Может быть, как раз все дело в том, что двумерное пространство слишком свободно, а геометрия пятимерного мира, наоборот, чересчур жестко «закреплена»? А в самом деле, почему? Почему пространство, в котором мы живем, трехмерно, а не четырехмерно или пятимерно?

Многие ученые пытались ответить на этот вопрос, исходя из общих философских соображений. Мир должен обладать совершенством, утверждал Аристотель, и только три измерения способны это совершенство обеспечить.

Однако конкретные физические проблемы не могут быть решены подобными методами.

Следующий шаг был сделан Галилеем, отметившим тот опытный факт, что в нашем мире могут существовать самое большее три взаимно перпендикулярных направления. Однако выяснением причин подобного положения вещей Галилей не занимался.

Сделать это пытался Лейбниц с помощью чисто геометрических доказательств. Но и такой путь малоэффективен, поскольку эти доказательства строились умозрительно, без связи с окружающим миром.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже