Читаем Новые рассказы Рассеянного Магистра полностью

— Да, да, — встрепенулся Сева, — например, 32 + 42 = 52.

— Или 52 + 122 = 132, — добавила Таня.

— Совершенно верно, — подтвердил я. — Таких числовых троек бесконечно много. Между прочим, равенство а2 + b2 = с2 связывается обычно с теоремой Пифагора. Что же касается Севиного примера — 3, 4 и 5, то эта тройка чисел была известна ещё в Древнем Египте, более 4000 лет назад.

Но вот, оказывается, нельзя подобрать три целых числа, чтобы сумма кубов двух из них равнялась кубу третьего. Подобрать их нельзя также и для четвёртой, и для пятой, и вообще для любой другой степени. Иначе говоря, равенство an + bn = cn невозможно, если п больше двух. Это и есть великая теорема Ферма, возникшая в первой половине семнадцатого века. Французский юрист и математик Пьер Ферма изложил её на полях книги «Арифметика», написанной древнегреческим математиком Диофантом, который жил более чем за 1000 лет до Ферма.

— А сам-то Ферма доказал свою теорему? — спросил Нулик.

— По его собственным уверениям, доказал. Мало того, он утверждал, что доказательство необычайно интересное. Но никаких следов этого доказательства не осталось. Во всяком случае, на полях Диофантовой книги его нет. То ли потому, что, по словам самого Ферма, там не хватило места для подробных рассуждений, то ли сам Ферма впоследствии усомнился в правильности своего доказательства… Так пли иначе, тайна теоремы Ферма остаётся тайной по сей день.

— А может быть, теорема неверна? — робко заикнулся Сева.

— Опровергнуть её пока что тоже никому не удалось И едва ли удастся. Надо полагать, теорема всё-таки справедлива. Но речь не об этом, а о том, что обманчивая простота теоремы Ферма привлекла к ней внимание множества людей. Доказательства сыпались, как из рога изобилия. Особенно усилился их наплыв после того, как дармштадтский математик Вольфскель завещал 100 000 марок Геттингенскому обществу наук с тем, чтобы деньги эти были вручены счастливцу, доказавшему теорему Ферма.

— А что, может, и мне попытать счастья? — воодушевился Нулик.

— Дело хозяйское, но скажу сразу надежды мало. Погорели на этом многие, и курьёзов было тьма! Вот, например, в одном журнале условие теоремы было записано неправильно: вместо того чтобы написать, что показатель степени должен быть больше двух, там было написано так:


an + bn = cn (n+2).


И нашёлся-таки чудак, который на основании этой опечатки опроверг теорему и потребовал немедленного денежного вознаграждения.

— Но ведь вы сами говорили, что доказательством теоремы Ферма занимались и крупные математики, — подцепил меня Сева.

— Не отрицаю, говорил. Теорему пытались доказать многие известные учёные. И некоторые из них, хоть и не доказали её полностью, внесли всё же существенный вклад в это дело. Начать с самого Ферма, который доказал свою теорему для частного случая n = 4. Кроме того, я уже говорил, что в середине восемнадцатого века справедливость теоремы для третьей степени доказал Леонард Эйлер. В середине следующего, девятнадцатого века геттингенский математик Лежен Дирихле нашёл доказательство и для пятой степени. А в конце того же девятнадцатого века расширил доказательство для всех простых чисел первой сотни немецкий математик Эрнст Эдуард Куммер. Для этого ему пришлось придумать новый метод исследования, который получил название алгебраической теории чисел. В наши дни этот метод успешно развивают многие математики.

Но вернёмся всё-таки в 1923 год, к началу моего рассказа.

После всего, что я сейчас говорил, вам, конечно, ясно, как самонадеянно с моей стороны было явиться к профессору Васильеву с моим доморощенным «доказательством» теоремы Ферма. И всё-таки я позвонил.

Небольшой полутёмный кабинет с низким потолком был весь заставлен мебелью и книгами. В углу уютно поблёскивала изразцами голландская печь. За громоздким письменным столом сидел седой коренастый человек с пышной бородой и на редкость добрыми глазами. Помню, больше всего поразило меня то, что не было в нём никакой профессорской важности. Несмотря на мою молодость, он держался со мной на равной ноге.

Александр Васильевич взял протянутую мною рукопись и стал её быстро просматривать. В некоторых местах он задерживался и, вытянув губы, слегка покачивал головой. Затем очень мягко, почти виновато сказал, что я допустил ошибку в логическом построении доказательства. Ошибку совсем незначительную, но если её исправить, то доказательства уже не получится.

— До чего симпатичный старик! — умилился президент.

— Удивительно симпатичный! — согласился я. — Конечно, я расстроился, а он стал меня утешать, юворил, что огорчаться не стоит, что ход мыслей у меня очень интересный и мне следует продолжать заниматься. И добавил, опустив глаза. «Только не теоремой Ферма, а вообще числами». Прощаясь, он долго держал мою руку в своей и глядел на меня так ласково, будто хотел сказать: «Не отчаивайтесь! Бывают в жизни и большие неприятности».

Перейти на страницу:

Все книги серии Рассеянный Магистр

Магистр Рассеянных Наук
Магистр Рассеянных Наук

В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра». Это помогает им развивать наблюдательность, совершенствовать свою математическую логику и пополнять знания не только по математике, но и по другим отраслям наук. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся. Герои книги попадают в экзотические страны, катаются на льдине, гуляют по краю кратера вулкана, а также подбирают математические ключи к любому замку и решают самые трудные задачи. Вместе с ними читатель узнает парадоксы и легко запоминает правила самой точной науки в мире, а также астрономии, физики и истории.Для младшего школьного возраста.

Владимир Артурович Левшин

Детская образовательная литература / Книги Для Детей

Похожие книги

Удивительные истории о существах самых разных
Удивительные истории о существах самых разных

На нашей планете проживает огромное количество видов животных, растений, грибов и бактерий — настолько огромное, что наука до сих пор не сумела их всех подсчитать. И, наверное, долго еще будет подсчитывать. Каждый год биологи обнаруживают то новую обезьяну, то неизвестную ранее пальму, то какой-нибудь микроскопический гриб. Плюс ко всему, множество людей верят, что на планете обитают и ящеры, и огромные мохнатые приматы, и даже драконы. О самых невероятных тайнах живых существ и организмов — тайнах не только реальных, но и придуманных — и рассказывает эта книга.Петр Образцов — писатель, научный журналист, автор многих научно-популярных книг.

Петр Алексеевич Образцов

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука