Идеи Пирса независимо от него использовал Клод Шеннон при создании первых компьютеров в 1940-е годы. Фактически Шеннон показал, как можно с помощью электрических схем реализовать машину Тьюринга. Прямое следствие открытий Тьюринга и Шеннона — возникновение во второй половине XX века того постиндустриального, цифрового мира, в котором мы сегодня живем. Физика полупроводников сделала компьютеры сначала реализуемыми, а потом и настолько миниатюрными, что их можно уместить в мобильный телефон. Так что, когда вы будете звонить по своему мобильнику, помяните благодарным словом этих великих людей.
Но в начале XXI века выяснилось, что использование электрических схем для создания вычислительных устройств имеет свои границы, и эти границы на сегодня практически достигнуты: перед человечеством встали задачи, которые можно решить с помощью существующих компьютеров, только теоретически. В реальности их решение потребует времени, сравнимого или даже превосходящего время существования Вселенной. И некоторые такие задачи имеют совсем простую формулировку, например, разложить большое число на простые множители (задача факторизации). На реальной невозможности решения этой задачи построено большинство криптографических систем, работающих методом шифрования с открытым ключом. Здесь не место подробно разбирать принципы работы таких алгоритмов шифрования, стоит отметить только, что если бы сегодня кому-то удалось найти способ быстро разлагать большие числа на простые сомножители, — для него стали бы доступны все транзакции во всех банках мира.
Другая задача, с которой не справляются (и по-видимому, никогда не смогут справиться) сегодняшние компьютеры, — это моделирование квантовых систем, в том числе сложных молекул, в частности самых интересных для нас — ДНК.
Профессор МГУ Юрий Ожигов, работающий в лаборатории квантовых компьютеров Физико-технического института РАН (ФТИАН), сказал: «Даже для численного моделирования единственного атома гелия (а это всего второй по сложности атом — после атома водорода. —