При размерах порядка нанометра заряженные частицы начинают «просачиваться» через закрытые переключатели, возникает «туннельный ток», и уже нельзя уверенно сказать, закрыт переключатель или открыт. Это чисто квантовый эффект, не имеющий аналогов в классическом мире, и связан он с тем, что заряженная частица — не частица вовсе, а волна информации, и при квантовых размерах локализовать ее положение с любой точностью нельзя.
Существует и еще одна принципиальная трудность — это отвод тепла. Работающий процессор нужно охлаждать, а это тоже возможно только до определенного предела. Еще в 1961 году сотрудник «IBM» Рольф Ландауэр сформулировал принцип, согласно которому в любой вычислительной системе, независимо от ее физической реализации, при стирании 1 бита информации выделяется теплота. Это происходит просто потому, что при стирании информации она теряется безвозвратно, а значит, увеличивается энтропия системы и неизбежно выделяется тепло. В начале 1960-х на этот принцип не обратили внимания — количество тепла показалось совершенно ничтожным; сегодня эта проблема стала одной из самых трудных.
Крупнейшие производители процессоров, и в первую очередь «Intel», отказались от наращивания тактовой частоты и перешли к реализации многоядерных решений, то есть фактически стали встраивать в компьютер не один процессор, а два или четыре. Но, во-первых, не все алгоритмы можно эффективно распараллелить, чтобы на двух процессорах они работали быстрее, чем на одном, а во-вторых, взаимодействие процессоров — это большие накладные расходы. Попросту говоря, два процессора работают не в два раза быстрее, чем один, а, скажем, в 1,8 раза. Причем чем процессоров больше, тем прирост будет менее значительным. То есть здесь тоже ясно виден предел. Но пока еще есть куда расти.