Обратите внимание, что даже самая простая операция прибавления единицы в такой записи выглядит довольно сложно, включая в себя 15 инструкций и восемь различных внутренних состояний! Конечно, в случае унарной записи все было значительно проще, поскольку тогда «прибавление единицы» означало удлинение строчки единиц еще на одну, поэтому не удивительно, что машина
UN +1была более простой. Однако, для очень больших чисел UN + 1была бы слишком медленной из-за чрезмерной длины ленты, и тогда более сложная машина XN + 1, но работающая с более компактным расширенным двоичным представлением, оказалась бы предпочтительнее.Несколько отступая в сторону, я укажу операцию, для которой машина Тьюринга проще в расширенной двоичной, нежели в унарной форме — это
0
0 -> 0 0R0
1 -> 1 0R1
0-> 0 1R1
1 -> 10 0R10
0 -> 11 1R11
0 -> 0 1.STOPзапросто выполнит эту операцию в расширенной двоичной форме, тогда как соответствующая унарная машина
UN х 2, описанная ранее, гораздо сложнее!Этот раздел дает определенное представление о том, на что способны в простейших случаях машины Тьюринга. Как и следовало ожидать, при выполнении более или менее сложных операций эти машины могут становиться, и действительно становятся, несравненно более сложными. Каковы же принципиальные возможности таких устройств? Мы рассмотрим этот вопрос в следующем параграфе.
Тезис Черча — Тьюринга
После ознакомления с принципами построения простых машин Тьюринга легко убедиться, что все основные математические операции, такие как сложение двух чисел, их перемножение или возведение одного из них в степень другого, могут на самом деле быть выполнены соответствующими машинами Тьюринга. Построение таких машин в явном виде не представляет больших затруднений, но я не собираюсь сейчас этим заниматься. Машины Тьюринга могут выполнять операции, результат которых выражается парой натуральных чисел, например, деление с остатком, или сколь угодно большим, но конечным множеством чисел. Более того, можно сконструировать такие машины Тьюринга, для которых арифметические операции не предопределены заранее, а могут задаваться инструкциями, вводимыми с ленты. При этом возможно, что та конкретная операция, которая должна быть выполнена, будет зависеть в тот или иной момент от результатов вычислений, которые машина должна была выполнить на предыдущих этапах. («Если результат вычислений больше, чем то-то, надо сделать то-то, в противном случае выполнить то-то».) Убедившись, что можно построить машины Тьюринга, выполняющие арифметические или простые логические операции, уже не так трудно представить себе, какими должны быть машины, выполняющие более сложные задачи алгоритмического характера. «Повозившись» немного с подобными задачами, легко приходишь к убеждению в том, что машина этого типа может выполнять вообще