Существует, однако, «законная» процедура для того, чтобы заставить машину Тьюринга последовательно воспроизводить цифры примерно так, как это предлагалось выше. Если мы хотим получить бесконечную десятичную запись, скажем, числа
, мы могли бы заставить машину Тьюринга сначала рассчитать его целую часть, 3, используя на входе 0, затем — первую цифру дробной части, 1, используя на входе 1, затем — вторую цифру дробной части, 4, используя на входе 2, потом — третью цифру, 1, используя 3 и т. д. Вообще говоря, машина Тьюринга для получения всех цифр десятичной записи числа
в этом смысле действительно существует, хотя реализовать ее в явном виде было бы затруднительно. Подобное же замечание относится и ко многим другим иррациональным числам, таким, например, как 2 = 1,414213562… Однако оказывается — и мы увидим это в следующей главе, — что некоторые иррациональные числа принципиально не могут быть получены с помощью машины Тьюринга. Числа, которые
можнополучить таким образом, называются
вычислимыми(Тьюринг [1937]), а остальные (в действительности абсолютное большинство!) —
невычислимыми. Я еще вернусь к этой теме и затрону ряд смежных вопросов в последующих главах. К нам это имеет отношение в связи с вопросом о том, может ли реальный физический объект (например, человеческий мозг) быть адекватно описан в терминах вычислимых математических структур в соответствии с нашими физическими теориями.Проблема вычислимости важна для математики в целом. Не следует думать, что она относится только к
числамкак таковым. Ведь машины Тьюринга могут непосредственно оперировать
математическими формулами, например, алгебраическими или тригонометрическими выражениями, или выполнять формальные действия математического анализа. Все, что для этого нужно, это некий способ точного кодирования всех используемых математических символов в виде последовательностей нулей и единиц, которые позволят применить соответствующую машину Тьюринга. Именно это Тьюринг имел в виду, когда он взялся за
проблему алгоритмической разрешимости, в которой требуется найти алгоритмическую процедуру для ответа на самые общие математические вопросы. Очень скоро мы вновь обратимся к этой теме.Универсальная машина Тьюринга
Я еще не затрагивал понятия
универсальноймашины Тьюринга. Лежащий в ее основе принцип понять нетрудно, хотя детали могут быть сложны. Основная идея состоит в том, чтобы закодировать команды для произвольной машины Тьюринга
Тв виде последовательности нулей и единиц, которую можно записать на ленте. Эта запись используется как начальная часть входных данных для некоторой
особоймашины Тьюринга
U, называемой универсальной, которая затем обрабатывает остальную часть ленты в точности так, как это сделала бы машина
Т. Универсальная машина Тьюринга — это универсальный имитатор. Начальная часть ленты дает универсальной машине
Uвсю информацию, необходимую для точной имитации любой машины
Т!