675045635852164214
869542347187426437
544428790062485827
091240422076538754
264454133451748566
291574299909502623
009733738137724162
172747723610206786
854002893566085696
822620141982486216
989026091309402985
706001743006700868
967590344734174127
874255812015493663
938996905817738591
654055356704092821
332221631410978710
814599786695997045
096818419062994436
560151454904880922
084480034822492077
304030431884298993
931352668823496621
019471619107014619
685231928474820344
958977095535611070
275817487333272966
789987984732840981
907648512726310017
401667873634776058
572450369644348979
920344899974556624
029374876688397514
044516657077500605
138839916688140725
455446652220507242
623923792115253181
625125363050931728
631422004064571305
275802307665183351
995689139748137504
926429605010013651
980186945639498
(или какому-нибудь другому подходящему, не менее внушительному по величине числу). Это число, без сомнения, выглядит устрашающе большим! Оно, действительно, чрезвычайно велико, но я не вижу способа, как его можно было бы сделать меньше. Процедуры кодирования и определения, использованные мною для машин Тьюринга, вполне разумны и достаточно просты, и все же с неизбежностью приводят к подобным несуразно большим числам для реальной универсальной машины Тьюринга
[48].Я уже говорил, что все современные общеупотребительные компьютеры, по сути, являются универсальными машинами Тьюринга. Я ни в коем случае не подразумеваю под этим, что их логическая структура должна в точности походить на предложенную мной выше структуру универсальной машины Тьюринга. Однако суть дела состоит в том, что если сперва ввести в произвольную универсальную машину Тьюринга соответствующую программу (начало подаваемой на вход ленты), то потом она сможет копировать поведение любой машины Тьюринга! В предыдущем примере программа просто принимает форму одного числа (числа
Неразрешимость проблемы Гильберта
Мы теперь вплотную подходим к той цели, ради которой Тьюринг с самого начала разрабатывал свою теорию — получить ответ на вопрос, заключенный в общей проблеме алгоритмической разрешимости, поставленной Гильбертом, а именно: существует ли некая механическая процедура для решения всех математических задач, принадлежащих к некоторому широкому, но вполне определенному классу? Тьюринг обнаружил, что он мог бы перефразировать этот вопрос следующим образом:
(Сюда же включены машины, которые в ходе работы попадают в ситуацию, когда нет команды, определяющей их дальнейшее поведение, как это было в случае рассмотренных выше фиктивных машин
В математике весьма важно иметь возможность установить момент, когда машина Тьюринга остановится. Рассмотрим для примера уравнение
(