Мы обнаружим множество других мельчайших наростиков на фоне общего беспорядочного завихрения. Справа видны едва различимые спиралевидные структуры, напоминающие «хвосты морских коньков», расположенные в области, которую мы так и назовем — «долина морских коньков». Здесь нам встретятся — если смотреть на это место при достаточно большом увеличении — разнообразные «морские анемоны» или области с богатой флорой. В конце концов, перед нами действительно может быть какой-то экзотический берег — возможно, коралловый риф, изобилующий всевозможными формами жизни. Объект, принятый нами за цветок, при более сильном увеличении может оказаться состоящим из мириада мельчайших и при этом невероятно сложных структур, с многочисленными волокнами и вихреобразными спиралевидными хвостами. Давайте рассмотрим подробнее один из более крупных хвостов морских коньков, а именно — едва различимое образование, обозначенное на рис. 3.4 как «рис. 3.5» (и соединенное с 29-ричным наростом!). Повысив увеличение в 250 раз, мы увидим изображенную на рис. 3.5 спираль.
Рис. 3.5. Хвост «морского конька» крупным планом
При этом окажется, что это не обычный хвост: и он тоже состоит из сложнейших вихреобразных структур с многочисленными мельчайшими спиралями и областями в форме осьминогов и морских коньков!
Рис. 3.6. Дальнейшее увеличение места соединения
спиралей. В центре едва различим маленький детеныш
Во многих местах видно, что исследуемые нами структуры расположены точно в том месте, где сходятся две спирали. Рассмотрим одно такое место (обозначенное как «рис. 3.6» на рис. 3.5) с дополнительным 30-кратным увеличением. Посмотрите-ка: в самой середине теперь виднеется странный объект, в котором, однако, есть что-то знакомое. Увеличим изображение еще в шесть раз (рис. 3.7) — появляется крохотный дочерний объект, практически идентичный всей структуре!
Рис. 3.7. При увеличении детеныш обнаруживает
сходство с целым миром
При более внимательном рассмотрении обнаруживаются некоторые отличия присоединенных к этой субструктуре волокон от тех, что выходят из основной структуры, — новые волокна, закручиваясь, уходят на значительно большие относительные расстояния. И при этом маленькое существо выглядит почти неотличимым от своего родителя, — у него даже есть аналогично расположенные собственные детеныши. Можно было бы исследовать и их, если вновь повысить увеличение приборов. «Внуки» тоже будут напоминать своего общего предка — и нетрудно увидеть, что так может продолжаться до бесконечности. Этот странный мир Тор'Блед-Нам можно исследовать как угодно долго, постоянно увеличивая разрешающую способность нашей системы наблюдения. И тогда перед нами предстанет бесконечное разнообразие: никакие две области не являются в точности одинаковыми, но всем им свойственны общие черты, которые очень быстро становятся узнаваемыми. Знакомые нам уже жукообразные существа появляются на все меньших и меньших масштабах. Каждый раз при этом расположенные рядом волокнистые структуры отличаются от предыдущих, демонстрируя новые фантастические сцены невероятной сложности.
В какой же странной и удивительно замысловатой по своей структуре стране мы оказались? Не сомневаюсь, что многие читатели уже знакомы с ней, но не все. Это не что иное, как фрагмент абстрактной математики — множество, известное под названием
Действительные числа
Напомним, что
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11…
Это самый элементарный и фундаментальный вид чисел. Ими можно количественно измерить любую дискретную сущность: можно говорить о двадцати семи овцах в поле, двух вспышках молнии, двенадцати ночах, тысяче слов, четырех беседах, нуле новых идей, одной ошибке, шести отсутствующих, двукратной смене направления и т. д. Натуральные числа можно складывать или перемножать, получая при этом новые натуральные числа. Мы использовали эти числа при обсуждении алгоритмов в предыдущей главе.