Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

На самом деле при счете дат имеет место некоторое отступление от этого правила, поскольку нулевой год пропускается.

Тем не менее некоторые важные математические операции могут все же вывести нас за пределы мира натуральных чисел. Простейшая из них — вычитание. Для систематического определения вычитания нам понадобятся отрицательныечисла. Теперь мы можем выстроить всю систему целых чисел:

… -6, -5, -4, -3, -2, -1, 0,

1, 2, 3, 4, 5, 6, 7…

Некоторые вещи — такие, как электрический заряд, банковские балансы или даты [58], измеряются количественно этими числами. Однако сфера применения целых чисел все же слишком ограничена, поскольку делениеодного числа на другое может оказаться неразрешимой задачей в рамках целых чисел. Соответственно, нам понадобятся дроби, или, как их называют, рациональные числа:

0, 1, -1, 1/2, -1, 2, -2, 3/2, -3/2, 1/3…

Этих чисел достаточно для операций конечной арифметики, но для очень многих задач нам потребуется пойти еще дальше, с тем чтобы охватить бесконечные операции или операции перехода к пределу. Например, хорошо известная — и играющая огромную роль в математике — величина ж возникает как результат многих бесконечных выражений. В частности, мы имеем:

а также

Это знаменитые выражения. Первое из них было найдено английским математиком, филологом и криптографом Джоном Уоллисом в 1655 году, а второе — шотландским математиком и астрономом (а также изобретателем первого телескопа-рефлектора) Джеймсом Грегори в 1671 году. Как и , определенные подобным образом числа необязаны быть рациональными (то есть представляться в виде m/n, где mи n— целые числа, причем nне равно нулю). Систему чисел необходимо расширить, обеспечив возможность включения в нее таких величин.

Расширенная таким образом система чисел называется системой действительных чисел— тех самых хорошо знакомых нам чисел, что представляются в виде бесконечных десятичных дробей, таких как:

-583,70264439121009538…

В этом представлении мы получаем следующее известное выражение для числа :

 = 3,14159265358979323846….

Другими примерами чисел, представимых таким образом, являются квадратные корни (или кубические корни, или корни четвертой степени) из положительных рациональных чисел, такие как:

2= 1,41421356237309504…

или же квадратные корни (или кубические корни и т. д.) любого положительного числа, как, например, выражение для числа , найденное великим швейцарским математиком Леонардом Эйлером:

= 6 (1 + 1/4 + 1/9 + 1/25 + 1/36 +…).

Действительные числа нам в сущности хорошо знакомы — мы с ними сталкиваемся в повседневной жизни. Правда обычно нас интересуют всего лишь приближения к этим числам и мы предпочитаем ограничиваться разложениями, состоящими из небольшого числа десятичных знаков. Тем не менее, в математических утверждениях может потребоваться точноезадание действительных чисел и, как следствие, необходимость в некотором бесконечном способе описания наподобие бесконечной десятичной дроби, или какого-нибудь иного бесконечного математического выражения вроде приведенных выше формул для числа , предложенных Уоллисом, Грегори и Эйлером. (В дальнейшем я буду обычно использовать десятичные дроби, но лишь потому, что они нам наиболее привычны. У математиков есть множество разных и более удовлетворительных способов представления действительных чисел, но нас это здесь не интересует.)

Может создаться впечатление, что представить себе все бесконечное десятичное разложение целиком невозможно, но это не так. Вот простой пример, когда вся последовательность знаков оказывается явным образом обозримой:

1/3 = 0,333333333333333…

Многоточие указывает на то, что последовательность троек продолжается бесконечно. Для получения полного представления об этом разложении достаточно знать, что оно действительно состоит из неограниченной последовательности одних лишь троек. У каждого рационального числа есть повторяющееся (или конечное) десятичное представление вроде:

93/74 = 1,2567567567567567…,

где последовательность 567повторяется неограниченное число раз. Это число тоже оказывается полностью обозримым. Также обозримым является выражение

0,220002222000002222220000000222222220…

Перейти на страницу:

Похожие книги