Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

(Несколько менее тривиальным является пример топологической эквивалентностимногообразий. Я упоминаю об этом только вкратце, ибо в главе 8 будут рассматриваться вопросы, имеющие к данному определенное отношение. Чтобы понять, что такое «многообразие», представьте для начала петлю, которая является многообразием в одном измерении; затем представьте замкнутую поверхность — многообразие в двух измерениях. Далее попробуйте представить некую «поверхность», имеющую трии более измерений. «Топологическая эквивалентность» двух многообразий означает, что одно из них может быть деформировано в другое путем непрерывных преобразований — без разрывов и склеек. Так, сфера и поверхность куба являются топологически эквивалентными, хотя они не эквивалентны поверхности кольца или чашки с ручкой — хотя последние топологически эквивалентны друг другу. При этом для двумерныхмногообразий существует алгоритм, позволяющий определить, эквивалентны ли произвольные два многообразия друг другу или нет — в сущности, заключающийся в подсчете «ручек», которые имеет каждая из поверхностей. Для случая трех измерений вопрос о существовании такого алгоритма на момент написания книги остается без ответа; однако для четырех и более измерений уже известно, что такого алгоритма быть не может. Возможно, четырехмерный случай имеет некое отношение к физике, поскольку согласно теории общей относительности Эйнштейна пространство и время совместно образуют четырехмерное многообразие (см. главу 5, «Специальная теория относительности Эйнштейна и Пуанкаре»). Герох и Хартли в 1986 году высказали предположение о том, что свойство неалгоритмичности может иметь отношение к «квантовой гравитации» (см. также главу 8).)

Давайте теперь рассмотрим иной тип задач, называемых задачами со словами [88]. Допустим, у нас есть некий алфавит символов, и мы рассматриваем различные строки этих символов, трактуя их как слова. Слова могут сами по себе не иметь никакого значения, но мы должны иметь некоторый (конечный) список «равенств» между ними, которые мы сможем использовать для дальнейшего построения таких «равенств». Это делается путем подстановки слов из исходного списка в другие (как правило, более длинные) слова, которые содержат их в виде составных частей. Каждая такая часть может быть заменена на равную ей в соответствии с используемым списком. Тогда для любой данной пары слов мы должны решить задачу об их равенстве согласно этим правилам.

В качестве примера мы можем взять для нашего исходного списка, скажем, такие равенства:

EAT = АТ

АТЕ = А

LATER = LOW

PAN = PILLOW

CARP = ME.

Отсюда мы можем, например, вывести

LAP = LEAP,

используя последовательные замены из второго, первого и снова второго соотношения из нашего исходного листа:

LAP = LATEP = LEATEP = LEAP.

Проблема теперь заключается в том, чтобы выяснить, сможем ли мы для любой наперед заданной пары слов осуществить вышеописанным образом переход от одного из них к другому? Можем мы перейти от CATERPILLAR к MAN, или, скажем, от CARPET — к MEAT? Ответ в первом случае оказывается утвердительным, тогда как во втором — отрицательным. Когда ответ утвердителен, стандартный путь показать его справедливость заключается в построении цепочки равенств, где каждое из слов получается из предыдущего с учетом допустимых соотношений. Итак, имеем (обозначая буквы, назначенные к замене, жирным шрифтом, а только что измененные — курсивом):

Как мы можем утверждать, что посредством разрешенных подстановок невозможно получить MEAT из CARPET? Для демонстрации этого факта придется подумать чуть больше, однако показать это не так уж сложно, причем множеством разных способов. Простейшим представляется следующий: в каждом «равенстве» из нашего списка число букв Аплюс число букв Wплюс число букв Мс каждой стороны одинаково. Значит, общая сумма указанных букв не может меняться в процессе преобразования по допустимым нашим списком правилам. Однако, для CARPETэта сумма равна 1, а для MEAT2. Следовательно, не существует способа получить из первого слова второе при помощи вышеприведенного списка равенств.

Перейти на страницу:

Похожие книги