Рис. 4.9.
Три непериодических «спиральных» замощения из таких же «универсальных» плиток, как и на рис. 4.8Эта форма «плиток», известная как «универсальная» (по вполне понятным причинам!), была предложена Б. Грюнбаумом и Дж. К. Шепардом [1981, 1987] на основании форм, изученных X. Фодербергом. Обратите внимание, что универсальная форма позволяет замостить плоскость
Рис. 4.10.
Набор Рафаэля Робинсона из шести плиток, который покрывает плоскость только непериодическиНебесполезно было бы сделать историческое отступление и посмотреть, как появился это непериодический набор (см. Грюнбаум, Шепард [1987]). В 1961 году американский логик китайского происхождения Хао Ванг поставил вопрос о существовании процедуры для решения задачи замощения, или, иными словами, о нахождении алгоритма, который позволил бы выяснить возможность замощения всей плоскости с помощью конечного набора многоугольников различной формы!
[89]Ему удалось показать, что такая процедура могла бы существовать, если бы получилось доказать следующую гипотезу: любой конечный набор разных «плиток», с помощью которого можно каким-нибудь способом выполнить замощение плоскости, пригоден также и для ее периодического замощения. Мне думается, в то время интуитивно казалось, что не может существовать набор «плиток», нарушающий это условие (т. е. не может существовать «непериодический» набор плиток). Однако в 1966 году, следуя в указанном Хао Вангом направлении, Роберт Бергер смог показать, что, на самом деле, процедуры решения задачи покрытия не существует: эта задача также принадлежит области нерекурсивной математики! [90]С учетом доказанного Хао Вангом это означало, что хотя бы один непериодический набор «плиток» должен существовать; и Бергер смог построить первый такой набор. Однако, из-за сложности выбранного им способа рассуждений, его набор состоял из ненормально большого числа «плиток» разной формы — изначально их насчитывалось 20 426. Использовав некоторый дополнительный искусный прием, Бергеру удалось сократить это число до 104. А в 1971 году Рафаэль Робинсон довел его до шести, которые изображены на рис. 4.10 выше.
Другой непериодический набор из шести «плиток» представлен на рис. 4.11. Это множество я придумал сам в 1973 году, следуя в своих рассуждениях несколько отличным путем. (Я вернусь к этой теме в главе 10 «Плиточные структуры и квазикристаллы», где на рис. 10.3, изображен массив, покрытый такими «плитками».)
Рис. 4.11.
Другой набор из шести плиток, который покрывает плоскость только непериодическиПосле того, как, я познакомился с «шестиплиточным» набором Робинсона, я начал думать о том, как сократить их число; и путем различных манипуляций с разрезаниями и склеиванием я, в конечном счете, смог довести количество «плиток» до двух. Две альтернативные схемы представлены на рис. 4.12.
Рис. 4.12.
Две пары плиток, которые покрывают плоскость только непериодически («плитки Пенроуза»). Также показано замощение плоскости каждой из этих парУзоры, которые получаются в результате полного замощения и имеющие с необходимостью непериодическую структуру, обладают рядом замечательных свойств, в том числе — кажущейся невозможной с точки зрения кристаллографии квазипериодической симметрией с осью пятого порядка. К этому вопросу я вернусь позднее.
Вероятно, это покажется удивительным, что такая очевидно «тривиальная» область математики, как замощение плоскости конгруэнтными «плитками», которая выглядит не более серьезно, чем «детская игра», на самом деле является частью нерекурсивной математики. В действительности эта область содержит множество трудных и не решенных пока задач. Пока неизвестно, например, есть ли