Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Физическая теория, о которой идет речь, имеет богатую историю. Но одно событие можно особенно выделить: это публикация в 1687 году Математических начал натуральной философииИсаака Ньютона. В этой работе, имеющей непреходящее значение, было показано, как, исходя из весьма немногих физических принципов, можно понять (причем зачастую с поразительной точностью) реальное поведение многих физических объектов. (Значительная часть Началпосвящена разработке математических методов, хотя более удобный для практического использования аппарат был создан позднее Эйлером и другими физиками и математиками.) Собственные труды Ньютона, как он охотно признавал, во многом опирались на труды его предшественников, выдающихся мыслителей, среди которых были Галилео Галилей, Рене Декарт и Иоганн Кеплер. Некоторые из основополагающих идей Ньютон заимствовал у еще более древних мыслителей. Упомяну в частности геометрические идеи Платона, Евдокса, Евклида, Архимеда и Аполлония. Об этих математиках я еще расскажу более подробно в дальнейшем.

Отклонения от основных положений динамики Ньютона появились позднее. Первым из них оказалась электромагнитная теория Джеймса Клерка Максвелла, разработанная в середине XIX века. Она охватывала не только классическое поведение электрического и магнитного полей, но и поведение света [95]. Эта замечательная теория будет рассмотрена нами чуть позднее. Теория Максвелла имеет первостепенное значение для современной технологии, равно как и для понимания принципов функционирования нашего головного мозга, в котором электромагнитные явления играют очень важную роль. Менее ясно, имеют ли какое-нибудь отношение к процессам нашего мышления две поистине великие теории относительности, связанные с именем Альберта Эйнштейна. Специальнаятеория относительности, возникшая из исследований уравнений Максвелла, была создана Анри Пуанкаре, Хендриком Лоренцем и Эйнштейном (позднее элегантное геометрическое описание специальной теории относительности предложил Герман Минковский) для объяснения необычного поведения тел, движущихся со скоростями, близкими к скорости света. Частью этой теории стало знаменитое соотношение Эйнштейна Е = mc 2. Но влияние специальной теории относительности на технологию до сих пор остается весьма слабым (если не считать ядерной физики), а отношение к функционированию нашего мозга — в лучшем случае косвенным. С другой стороны, специальная теория относительности затрагивает фундаментальные вопросы физической реальности, связанные с природой времени. В последующих главах мы увидим, что это приводит нас к ряду «загадок» из области квантовой теории, которая может иметь принципиальное значение для понимания наших механизмов восприятия «течения времени». Кроме того, нам необходимо понять специальную теорию относительности прежде, чем мы сможем должным образом оценить общую теорию относительностиЭйнштейна — теорию, которая использует для описания гравитации искривленное пространство-время. До сих пор эта теория не оказывала на технологию почти никакого влияния [96]так что предположение о возможной связи между общей теорией относительности и процессами, происходящими в нашем мозге, потребовало бы немалой смелости воображения.

Интересно, что в наших дальнейших размышлениях общая теория относительностибудет играть существенную роль, особенно в главах 7 и 8, где нам придется отправиться в самые удаленные области пространства и времени, чтобы собрать «по зернышку» сведения о тех изменениях, которые, как я считаю, необходимы для создания полностью непротиворечивой картины квантовой теории — но об этом позже!

Все, что мы до сих пор упоминали, относится к области классической физики. А как обстоит дело с квантовой физикой? В отличие от теории относительности, квантовая теория начинаетоказывать существенное влияние на технологию. Отчасти это объясняется тем вкладом, который квантовая теория внесла в столь технологически важные области, как химия и металлургия. Действительно, для многих эти области теперь срослись с физикой именно благодаря тем новым знаниям, которые дала нам квантовая теория. Помимо этого существуют и совершенно новыеявления, появление которых без квантовой теории было бы невозможным (самым известным из таких явлений, думаю, будет справедливо назвать лазер). Тогда что же мешает нам предположить, что некоторые существенные аспекты квантовой теории могут играть решающую роль в той физике, которая лежит в основе наших процессов мышления?!

Перейти на страницу:

Похожие книги