Читаем Новый ум короля: О компьютерах, мышлении и законах физики полностью

Не следует удивляться тому, что основные ПРЕВОСХОДНЫЕ теории возникли довольно давно. Вероятно, на протяжении истории таких теорий существовало гораздо больше, но некоторые из них со временем перешли в категорию ПРОБНЫХ и в большинстве своем оказались забыты. Аналогичным образом, в категорию ПОЛЕЗНЫХ теорий попадало немало таких, которые впоследствии теряли свою актуальность, тогда как некоторые поглощались другими — ставшими впоследствии ПРЕВОСХОДНЫМИ теориями. Рассмотрим несколько примеров. До того, как Коперник, Кеплер и Ньютон создали новую, более совершенную теорию, существовала детально разработанная теория планетных движений, родившаяся в Древней Греции и получившая название птолемеевой системы. Согласно этой модели, движения планет описывались сложной суперпозицией круговых движений. Птолемеева система была весьма эффективной с точки зрения предсказаний, но с каждым разом становилась все сложнее и сложнее по мере повышения требований к точности. Нам, живущим ныне, птолемеева система кажется слишком искусственной. Это — хороший пример ПОЛЕЗНОЙ системы (она действительно была полезной на протяжении почти двадцати веков!), которая впоследствии, сыграв свою историческую организующую роль, сошла со сценыкак физическая теория. В качестве хорошего примера ПОЛЕЗНОЙ теории, которая в конце концов доказала свою состоятельность, можно привести блестящую идею Кеплера о движении планет по эллиптическим орбитам. Другим примером могла бы стать периодическая система химических элементов Менделеева. Сами по себе эти идеи не позволяют построить модели, обладающие предсказательной силой требуемого «феноменального» характера, однако в будущем они становятся «правильными» следствиями из выросших из них ПРЕВОСХОДНЫХ теорий (соответственно, ньютоновской динамики и квантовой теории).

В последующих разделах и главах я не буду останавливаться на обсуждении существующих ныне теориях, которые всего лишь ПОЛЕЗНЫ или ПРОБНЫ. Достаточно сказать о тех теориях, которые ПРЕВОСХОДНЫ. Можно считать удачей, что у нас есть такие теории, позволяющие постигать этот мир во всей его полноте. Но в конечном счете, мы должны попытаться решить вопрос о том, достаточно ли могущественны даже эти теории, чтобы описывать функционирование нашего мозга и работу разума. В свое время я еще вернусь к этой теме — а пока мы рассмотрим ПРЕВОСХОДНЫЕ теории в том виде, в котором они нам сегодня известны, и попробуем оценить степень их применимости к интересующим нас задачам.

Евклидова геометрия

Евклидова геометрия — это, попросту говоря, тот самый предмет, который мы изучаем в школе как «геометрию». Однако я подозреваю, что большинство людей склонны считать евклидову геометрию областью математики, а вовсе не физической Теорией. Разумеется, евклидова геометрия является в том числеи математикой — но все же это не единственная возможная математическая геометрия. Та геометрия, которую придумал Евклид, очень точно описывает физическое пространство нашего с вами мира, но это — не логически необходимое следствие, а всего лишь (почти точно) наблюдаемое свойство физического мира.

Действительно, существует другая геометрия, называемая геометрией Лобачевского(или гиперболической) [103]которая во многом похожа на евклидову геометрию, но имеет при этом и некоторые интригующие отличия. Напомним, в частности, что в евклидовой геометрии сумма углов треугольника всегда равна 180°. В геометрии Лобачевского сумма углов треугольника всегда меньше 180°, причем отличие суммы углов от 180° пропорционально площади треугольника (рис. 5.1).

Рис. 5.1.а) Треугольник в евклидовом пространстве,

б) Треугольник в пространстве Лобачевского

Замечательный голландский художник Мориц К. Эшер создал несколько мозаик, очень тонко и точно передающих суть геометрии Лобачевского. Одна из этих мозаик представлена на рис. 5.2.

Рис. 5.2.Пространство Лобачевского, изображенное

Эшером в виде мозаики. (Все рыбы — как черные,

так и белые — должны считаться конгруэнтными.)

Перейти на страницу:

Похожие книги