Здесь угадывается определенное сходство с философской концепцией Платона (изложенной примерно в 360 году до н. э. — почти за пятьдесят лет до появления
НачалЕвклида — знаменитого сочинения по геометрии). С точки зрения Платона объекты чистой геометрии — прямые, окружности, треугольники, плоскости и т. п. — могут быть лишь приблизительно реализованы в реальном мире физических вещей. Эти математически точные объекты чистой геометрии обитают в другом мире —
платоновском идеальном мирематематических понятий. Платоновский мир состоит не из осязаемых вещей, а из «математических объектов». Этот мир доступен нашему восприятию не обычным физическим путем, а посредством
интеллекта. Человеческий разум контактирует с миром Платона всякий раз, когда открывает математическую истину, постигая ее с помощью математических рассуждений и интуитивных догадок. Идеальный мир Платона рассматривался как отличный от нашего материального мира — более совершенный, но при этом столь же реальный. (Вспомним сказанное в главах 3 и 4, с. 89, 101 о платоновской реальности математических понятий.) Таким образом, хотя идеальные объекты чистой евклидовой геометрии можно исследовать с помощью мысли, логически выводя при этом их свойства — отсюда вовсе не следует, что для «несовершенного» физического мира, воспринимаемого нашими органами чувств, неукоснительное следование этому идеалу является необходимостью. Располагая в свое время достаточно скудными данными, Платон, по-видимому благодаря какому-то чудесному озарению, смог предугадать, что, с одной стороны, математику следует изучать и понимать ради самой математики, и что нельзя требовать полного и точного соответствия математических объектов объектам физического опыта; а с другой — что функционирование реального внешнего мира в конечном счете может быть понято только в терминах точной математики, т. е. в терминах платоновского идеального мира, «доступного через интеллект»!Платоном в Афинах была основана Академия, в задачи которой входило дальнейшее развития таких идей. Среди элиты, выросшей из числа членов этой Академии, был и необычайно влиятельный и знаменитый философ Аристотель. Но здесь нас будет интересовать другой человек, принадлежащий к платоновской Академии — математик и астроном Евдокс, несколько менее известный, чем Аристотель, но, по моему глубокому убеждению, гораздо более проницательный ученый, один из величайших мыслителей античности.
В евклидовой геометрии есть одна очень важная и тонкая составляющая, которая, на самом деле, является очень существенной и которую сегодня мы вряд ли вообще отнесли бы к геометрии! (Математики охотнее назвали бы это «анализом», чем «геометрией».) Речь идет о введении
действительных чисел. Евклидова геометрия использует длины и углы. Чтобы иметь возможность использовать такую геометрию, нам необходимо понимать, какого рода «числа» нужны для описания этих самых длин и углов. И здесь новая идея была предложена Евдоксом (ок. 408–335 гг. до н. э.) в IV веке до н. э.
[104]) Греческая геометрия переживала «кризис» из-за открытия пифагорейцами таких чисел, как 2 (последнее необходимо для того, чтобы выразить длину диагонали квадрата через длины его сторон), не представимых в виде дроби, т. е. отношения двух целых чисел. Для древних греков было важно иметь возможность формулировать их геометрические меры (отношения) в терминах (отношений) целых чисел, чтобы оперировать геометрическими величинами в соответствии с правилам арифметики. В основном, идея Евдокса заключалась в том, чтобы дать метод описания отношений длин (т. е. действительных чисел!) в терминах
целых чисел. Евдоксу удалось сформулировать в рамках операций над целыми числами такие критерии, которые позволяли решать, является ли одно из отношений длин больше другого или их можно считать в точности равными.В общих чертах идея Евдокса сводится к следующему: если
a,
b,
cи
d— четыре длины, то критерием, позволяющим утверждать, что отношение
а/b
большеотношения
c/d, будет существование таких целых чисел
Ми
N, что длина
а, сложенная сама с собой
Nраз, больше длины
b, сложенной сама с собой
Мраз, — тогда как длина
d, сложенная сама с собой
Мраз, больше длины
с, прибавленной к самой себе
Nраз
[105]). Соответствующий критерий можно аналогичным образом использовать для установления противоположного неравенства
а/b
c/d. А искомый критерий
равенства
а/b =
c/dпросто отвечает случаю, когда ни один из двух критериев (
а/b
c/dи
а/b
c/d) не может быть выполнен!